
IEEE TRANSACTIONS ON IMAGE PROCESSING 1

Kernelized Similarity Learning and Embedding for
Dynamic Texture Synthesis

Shiming Chen, Peng Zhang, Xinge You, Senior Member, IEEE, Qinmu Peng, Member, IEEE,
Xin Liu, Member, IEEE, Zehong Cao, Member, IEEE and Dacheng Tao, Fellow, IEEE

Abstract—Dynamic texture (DT) exhibits statistical stationarity
in the spatial domain and stochastic repetitiveness in the temporal
dimension, indicating that different frames of DT possess high
similarity correlation that is a critical prior knowledge. However,
existing methods cannot effectively learn a promising synthesis
model for high-dimensional DT from a small number of training
data. In this paper, we propose a novel DT synthesis method,
which makes full use of similarity prior knowledge to address
this issue. Our method bases on the proposed kernel similarity
embedding, which not only can mitigate the high-dimensionality
and small sample issues, but also has the advantage of modelling
nonlinear feature relationship. Specifically, we first raise two
hypotheses that are essential for DT model to generate new
frames using similarity correlation. Then, we integrate kernel
learning and extreme learning machine into a unified synthesis
model to learn kernel similarity embedding for representing
DT. Extensive experiments on DT videos collected from internet
and two benchmark datasets, i.e., Gatech Graphcut Textures
and Dyntex, demonstrate that the learned kernel similarity
embedding can effectively exhibit the discriminative represen-
tation for DT. Accordingly, our method is capable of preserving
long-term temporal continuity of the synthesized DT sequences
with excellent sustainability and generalization. Meanwhile, it
effectively generates realistic DT videos with fast speed and low
computation, compared with the state-of-the-art methods. The
code and more synthesis videos are available at our project page
https://shiming-chen.github.io/Similarity-page/Similarit.html.

Index Terms—Dynamic texture (DT), kernel similarity embed-
ding, extreme learning machine, similarity prior knowledge.

I. INTRODUCTION AND MOTIVATION

DYNAMIC texture, exhibiting statistical stationarity in
the spatial domain and stochastic repetitiveness in the

temporal dimension, is one of the dynamic patterns in computer

This work was supported in part by the National Natural Science Foundation
of China (61571205 and 61772220), the Key Program for International S&T
Cooperation Projects of China (2016YFE0121200), the Special Projects for
Technology Innovation of Hubei Province (2018ACA135), the Key Science
and Technology Innovation Program of Hubei Province (2017AAA017), the
Natural Science Foundation of Hubei Province (2018CFB691), fund from
Science, Technology and Innovation Commission of Shenzhen Municipal-
ity (JCYJ20180305180804836 and JSGG20180507182030600). (Correspond-
ing author: Xinge You.)

S. Chen, P. Zhang, X. You and Q. Peng are with the Department of
Electronic Information and Communication, Huazhong University of Science
and Technology, Wuhan 430074, China. (e-mail:gchenshiming@gmail.com;
youxg@hust.edu.cn; pengqinmu@hust.edu.cn).

X. Liu is with the Department of Computer Science and Technology, Huaqiao
University, Xiamen 361021, China (e-mail: xliu@hqu.edu.cn).

Z. Cao is is with the Discipline of ICT, University of Tasmania, TAS 7001,
Australia (e-mail:zehong.cao@utas.edu.au).

D. Tao is with the UBTECH Sydney Artificial Intelligence Centre, Fac-
ulty of Engineering and Information Technologies, School of Information
Technologies, The University of Sydney, Darlington, NSW 2008, Australia
(e-mail:dacheng.tao@sydney.edu.au).

vision [1], [2], e.g., moving vehicles, falling water, flaming
fire, rotating windmill. Due to the demands of dynamic
patterns synthesis in video technology applications (e.g., texture
recognition [3], video segmentation [4], [5] and super-resolution
[6]), synthesizing DTs has gradually become an interesting
topic in computer graphic and computer vision [7]–[12]. DT
synthesis aims to infer a generating process from a DT example,
which then allows producing an infinitely varying stream of
similar looking texture videos.

In general, DT synthesis methods can be categorized into
two groups: non-neural-networks-based methods and neural-
networks-based methods. The first group methods are popular
approaches for DT synthesis in the early stage, and it can
be further classified as physics-based methods [13]–[15],
nonparametric methods [16], [17] and dynamic system (DS)
modeling methods [1], [8], [18]–[20]. The second group
methods automatically learn the texture distribution with
effective representation of neural networks [7], [9], [11], [12],
[21], [22]. However, DT is high-dimensional data and lacks
enough samples (DT sample typically only has one single
training video with a short length of sequence). The non-
neural-network-based methods usually seek to reduce the
dimensionality of DT for modeling, which may account for
information loss and it is hard to design a proper dimensionality-
reduction algorithm. Meanwhile, neural-network-based methods
fail to effectively fit their large number of parameters when
learning from a small number of training samples. To overcome
these challenges, we propose a novel insight for DT synthesis
that prior knowledge is mined and exploited, i.e., similarity
prior knowledge.

In fact, the similarity correlation between frame-to-frame is
an explicit expression of statistical stationarity and stochastic
repetitiveness of DT. It is a critical representation to distinguish
DTs from other videos. Similarity representation serves as the
learning objective of metric learning for the discriminative
model [3], [23], [24], which suggests the importance of
similarity correlation for representation. Some researchers
also attempted to mine the potential similarity knowledge of
samples to improve the performance of the discriminative model
[25]–[31], which suggests that similarity correlation is critical
prior knowledge as important as the class labels and other
annotation information. Moreover, the similarity correlation
can explicitly capture the homogeneous and heterogeneous
correlation between different frames of DT. However, to the
best of our knowledge, there are no studies on DT synthesis
to consider the similarity prior knowledge to address the high-
dimensionality and small sample issues, and this is the focus

https://shiming-chen.github.io/Similarity-page/Similarit.html


IEEE TRANSACTIONS ON IMAGE PROCESSING 2

Fig. 1: The core idea of the proposed method. DT exhibits
statistical stationarity in the spatial domain and stochastic repet-
itiveness in the temporal dimension, indicating that different
frames of DT possess high similarity correlation. Meanwhile,
this correlation can be expressed by kernel similarity matrix
and embedded into kernel similarity embedding.

of the present paper.
To make full use of similarity prior knowledge, we embed

it into the representation of the generative model for DT
synthesis. Thus, we raise two hypotheses: 1) the content
of texture video frames varies over time-to-time while the
more closed frames should be more similar, and 2) the
transition between frame-to-frame can be modeled as a linear
or nonlinear function to capture the similarity correlation.
These hypotheses are essential for the DT model to generate
new frames according to current frames using a similarity
correlation of different frames. Fortunately, kernel function
implicitly embraces an exciting property that it can elegantly
represent the similarity of two inputs [32]. Thus our core idea
is that the statistical stationarity in the spatial domain and the
stochastic repetitiveness in the temporal dimension of DTs can
be partially captured by similarity correlation between frame-
to-frame. This correlation can be further elegantly exhibited
by kernel similarity matrix that is embedded into kernel
similarity embedding for representation, as demonstrated in
Figure 1. Furthermore, extreme learning machine (ELM) as
an emergent technology which overcomes some challenges
faced by other computational intelligence techniques, and it
has recently attracted the attention of more researchers [33]–
[37]. Therefore, we attempt to make full advantage of ELM
and jointly utilize kernel learning to learn kernel similarity
embedding for improving DT synthesis.

In this work, we propose a novel DT synthesis method to
generate high-quality, long-term DT sequences with fast speed
and low computation. It integrates kernel learning and ELM into
a powerfully unified synthesis model to learn kernel similarity
embedding for representing statistical stationarity in the spatial

domain and stochastic repetitiveness in the temporal dimension
of DT sequences. Specifically, we preprocess every input DT
sequence SN (N is the length of DT sequence), which is
divided into two parts: explanatory frames and response frames.
Then, our method uses kernel function to replace the feature
mapping function of the hidden layer of extreme learning
machine, and thus the kernel similarity embedding is easily
learned after training. Finally, the DT sequence is iteratively
generated via the trained model of our method.

To summarize, this study makes the following salient
contributions:

• We raise two efficient hypotheses to benefit the DT
system, which are essential for the DT system to generate
new frames according to current frames using similarity
correlation of different frames.

• We propose a novel DT synthesis method, which learns
kernel similarity embedding to synthesize realistic video
sequences with good sustainability and generalization.

• We introduce kernel similarity embedding to mine and
exploit similarity prior knowledge of DT and analyze its
availability in intuitive and theoretical insights.

• We carry out extensive experiments on benchmark datasets
to demonstrate that our method shows consistent improve-
ment over the state-of-the-art methods.

The remainder of this paper is organized as follows. Section
II provides an overview of the background and related works of
DT synthesis. The proposed method based on kernel similarity
embedding is elaborated in Section III. The performance and
evaluation are given in Section IV. Section V presents the
discussion. Section VI provides a summary and the outlook
for future research.

II. BACKGROUND AND RELATED WORK

The goal of DT synthesis is to generate an infinitely
varying stream of similar appearance texture videos. It aims to
accurately learn a transition function f from the input texture
sequence {yt}t=1,...,N ∈ Rm (N is the length of sequence, m
is the dimensionality of frame) of training set, which can be
formulated as:

yt = f (yt−1) (1)

A straightforward way to learn f is to solve the following
objective function:

f ′ = argmin
f

1

2

N∑
t=2

(yt − f (yt−1))
2 (2)

After training, f ′ can be learnt. Subsequently, given an initial
frame y′t−1 from an input texture sequence of test set, the
endless sequences {y′t}t=2,3,... can be generated iteratively by:

y′t = f ′
(
y′t−1

)
(3)

In the following, we provide a comprehensive review of
related work of DT synthesis based on various methods.



IEEE TRANSACTIONS ON IMAGE PROCESSING 3

A. Non-Neural-Network-Based Methods

1) Physics-Based Methods: Physics-based methods describe
DT by simulating its physical mechanism using complicate
models. In [13], Pegoraro and Parker presented a new method
for the physically-based rendering of frames from detailed
simulations of frame dynamics, which accounts for their unique
characteristics. This method can synthesize highly realistic
renderings of various types of frames. Nealen et al. [14]
proposed a physically based deformable model for DT synthesis
and made a connection to the simulation of various DT, e.g.,
fluids, gases, and melting objects. Higher-order SVD (HOSVD)
analysis for DT synthesis is proposed in [15]. It decomposes the
DT as a multi-dimensional signal without unfolding the video
sequences on column vectors, and thus it allows us to perform
dimensionality-reduction in the spatial, temporal, and chromatic
domain. In summary, although physics-based methods can
generate an impressive DT, they are highly application-specific
with weak generalization.

2) Dynamic System Modeling Methods: Dynamic system
(DS) modeling methods for DT synthesis are the most popular
non-neural-network-based method. DS modeling methods
typically learn transition function for representing the cor-
relation of different frames of DTs using linear or nonlinear
dimensionality-reduction algorithms. A proper dimensionality-
reduction algorithm is hard to design, and it may account for
information loss of DT. These are the main limitations of DS
modeling methods. In [1], Doretto et al. proposed pioneering
DS method for DT synthesis using a simple linear dynamic
system (LDS) to project the input video frames into lower
dimensional space by singular value decomposition (SVD).
Siddiqi et al. [20] proposed a stable-LDS (SLDS) based method
to add constraints to a relaxed system solution incrementally
and to improve stability. To better adapt the standard LDS-based
method to memory- and computational power-limited devices,
Abraham proposed new DT synthesis with Fourier descriptors
(FFT-LDS) [19], which requires far fewer parameters for DT
synthesis compared to standard LDS approaches. In [18], Chain
and Vasconcelos introduced a new method (Kernel-DT) for DT
synthesis using kernel principal component analysis (KPCA)
to learn a nonlinear observation function. There is an essential
problem existing in the aforementioned DS modeling methods,
in which the column vector dimension of the unfolded frame
is often too large compared to the number of given texture
frames. To address this problem, the kernel principal component
regression (KPCR) method was proposed for DT synthesis by
You [8].

B. Neural-Network-Based Methods

The neural network has proven to be an immensely successful
discriminative and generative learning machine [23], [38]–[40].
In term of DT synthesis, various approaches based on the
ConvNet have been proposed [7], [9], [11], [12], [22]. In [7],
Gatys et al. introduced a new model of DT synthesis based
on the feature spaces of convolutional neural networks that
represent texture using the correlations between feature maps
in several layers. Motivated by the works on style transfer and
enabled by the two-stream model, Tesfaldet et al. proposed

a two-stream model for DT synthesis [11]. This method
represents the textures appearance and dynamic of DT using a
set of Gram matrices. [21] presented the motion and content
decomposed generative adversarial networks (MoCoGAN)
for video generation. MoCoGAN is good at generating DTs
when learning from a large number of training data. In [9],
[12], Xie er al. proposed an energy-based spatial-temporal
generative ConvNet to model and to synthesize dynamic
patterns. This model is beneficial for generating realistic
dynamic patterns when the incomplete input sequences with
either occluded pixels or missing frames. [22] presented a
dynamic generator model using alternating back-propagation
through time algorithm for DT synthesis. This model is efficient
in terms of computational cost and model parameter size
because it does not need to recruit a discriminative network or
an inference network. In summary, neural-neural-based methods
fail to exhibit their powerful representation because DT is high-
dimensional data and lack of enough samples. Meanwhile,
they are time-consuming and computationally expensive for
learning their large number of parameters. Therefore, an
extreme learning machine may be the desired successor for
DT synthesis with expected generalization performance at a
surprising learning speed.

III. THE PROPOSED DT SYNTHESIS METHOD

Similarity is a key prior knowledge existing in different
samples or self-sample as important as the class labels and
other annotation information. Thus, some researchers recently
consider to make use of the similarity knowledge of samples
to improve the performance of the discriminative model in
various tasks, i.e., person re-identification (re-ID) [25]–[27],
content-based image retrieval [28]–[31]. DT exhibits statistical
stationarity in the spatial domain and stochastic repetitiveness
in the temporal dimension, indicating that different frames
of DT possess a high similarity correlation. These similarity
correlations can also be viewed as the critical prior knowledge,
which may mitigate the high-dimensionality and small sample
issues for DT synthesis. Therefore, we propose a novel DT
synthesis method. It is recommended to synthesize desirable
DTs at fast synthesis speed using kernel similarity embedding,
which bases on ELM and kernel learning.

In this section, we first revisit ELM for conveniently
understanding the proposed method. We then illustrate our
method that uses ELM based kernel similarity embedding.
Meanwhile, we introduce the additive regularization factor to
smooth kernel similarity embedding, and thus our method will
be stabler and tend to have better generalization. Finally, we
intuitively and theoretically analyze the mechanism of how and
why our method can generate realistic, long-term DT videos.

A. Revisiting Extreme Learning Machine

ELM has initially been proposed by Huang et al. [33], and
it serves as an emergent technology that has recently attracted
much attention [33]–[37]. ELM works for generalized single-
hidden layer feedforward networks (SLFNs). Its essence is that
the hidden layer of SLFNs need not be tuned, which means that
the feature mapping between the input layer and hidden layer



IEEE TRANSACTIONS ON IMAGE PROCESSING 4

is randomly assigned. With better generalization performance,
ELM overcomes some challenges (e.g., slow learning speed,
trivial human intervene and poor computational scalability)
faced by other computational intelligence techniques. Moreover,
the parameters of the hidden layer are randomly initialized
during training, and then the weights of the output layer are
learned. Therefore, we take full advantage of ELM to expedite
the generated speed for DT synthesis with good generalization.

Before introducing ELM formally, we define the notations.
Given a dataset T = {(x1,y1) , · · · , (xN ,yN )}, where xi ∈
Rn, yi ∈ Rm, i = 1, ..., N . The model of ELM with L hidden
nodes can be formulated as:

fL(x) =

L∑
i=1

βihi(x) = h(x)β (4)

where β = [β1, . . . , βL]
> is the vectors of output weights

between the hidden layer and the output layer, h(x) =
[h1(x), . . . , hL(x)] is the output vector of the hidden layer
with respect to the input x, and L is the number of nodes of
hidden layer. Intuitively, h(x) is a feature mapping, it maps the
input x from n-dimensional input space to the L-dimensional
hidden layer feature space (ELM feature space) H .

According to Bartlett’s theory [41], the smaller the norm of
weights are, the better generalization performance networks
tend to achieve, while networks reaches smaller training error.
See work [42], minimizing the norm of the output weights is
actually to maximize the distance of the separating margins
of different domains in the feature space. Therefore, different
from traditional intelligent learning algorithms, ELM is to
minimize the training errors and the norm of the output weights
simultaneously. That is shown in Eq. (5).

Minimize : ‖Hβ − Y ‖2 and ‖β‖ (5)

where H is output matrix of the hidden layer, shown in Eq.
(6).

H =

 h (x1)
...

h (xN )

 =


h1 (x1) · · · hL (x1)

...
...

...

h1 (xN )
... hL (xN )

 (6)

To solve Eq. (5), the minimal norm least square method is
typically used, and the solution is written as Eq. (7).

β = H†Y (7)

where H† is the Moore-Penrose generalized inverse of H ,
Y = [y1, . . . ,yn] ∈ Rm×n. There are different methods can
be used to calculate the Moore-Penrose generalized inverse
of H , e.g., orthogonalization method, orthogonal projection
method, and singular value decomposition. Here we use the
orthogonal projectional method, which can be used in two
cases: 1) if H>H is nonsingular, H† =

(
H>H

)−1
H>, or

2) if HH> is nonsingular, H† = H†
(
HH>

)−1
.

Therefore, Eq. (7) can be rewritten as Eq. (8) or Eq. (9).

β = H>
(
HH>

)−1
Y (8)

β =
(
H>H

)−1
H>Y (9)

Finally, the model of ELM can be written as Eq. (10) or Eq.
(11).

f(x) = h(x)β = h(x)H>
(
HH>

)−1
Y (10)

f(x) = h(x)β = h(x)
(
H>H

)−1
H>Y (11)

Note that, the size of HH> is N ×N , the size of H>H
is L× L. Indeed, N < L in the field of DT synthesis. From
practical point of view, we get the solution of ELM based on
Eq. (10) in following section.

B. Kernel Similarity Embedding for DT Synthesis

Presenting from the revisiting in Section III-A, we know
that feature mapping h(x) is crucial for ELM. However,
h(x) is known to the user and selected artificially, which
is similar to the selection of dimensionality-reduction function
of physics-based methods and DS modeling methods for DT
synthesis. Moreover, the nodes L of the hidden layer of ELM
are typically more than the dimensions of input data. It means
that feature mapping function h(x) explicitly maps samples to
high dimensional space, which is equivalent to the original idea
of the kernel function. Furthermore, kernel function possesses
an exciting property that can effectively measure the similarity
of different samples, which can elegantly exhibit the similarity
correlation between different frames for DT. Therefore, we
extend ELM to kernel-ELM by kernel learning (kernel function:
K(u,v)) for DT synthesis.

The architectural overview of our method is shown in
Figure 2. Before training, all input DT sequences substrate
their temporal mean, St ← St − S, and the input video
sequence is divided into two sub-sequences: explanatory frames
and response frames. During training, we use kernel-ELM
to learn the kernel similarity matrix for representing the
statistical stationarity in the spatial domain and the stochastic
repetitiveness in the temporal dimension of DT. The kernel
similarity matrix will be further embedded into kernel similarity
embedding for representation. During testing, the high-fidelity
long-term DT sequence is synthesized iteratively using kernel
similarity embedding.

At first, we define a kernel similarity matrix ΩKSM :

ΩKSM = HH> (12)

and

ΩKSMi,j
= h (xi) · h (xj) = K (xi,xj) (13)

In fact, kernel-ELM shares a similar network structure with
ELM and optimizes output weights β of ELM using kernel
function K(u; v) for learning kernel similarity embedding.
Therefore, kernel-ELM is easier to learn a model than ELM
and keeps the merits of ELM. According to ridge regression
theory [43], we can add a regularization factor λ (positive small
value) to control the regularization performance of ‖β‖ during
optimization, which is dissimilar to [34] that regularizes the
term ‖Hβ − Y ‖2. If a proper λ is used, the kernel similarity
matrix will be more smooth, and thus our method will be stabler



IEEE TRANSACTIONS ON IMAGE PROCESSING 5

Fig. 2: The architectural overview of our proposed DT synthesis method.

and tend to have better generalization performance. Then, the
optimization objective of our method can be formulated as:

Minimize : L =
1

2
λ‖β‖2 +

1

2

N∑
i=1

‖ξi‖2

s.t. h (xi)β − Y >i = ξ>i

(14)

where i = 1, . . . , N (N is the number of training frames),
ξi = [ξi,1, . . . , ξi,m]

> is the training error vector of the training
sample xi. According to the Lagrange theorem, training our
method is equivalent to solve the following optimization object:

L =
1

2
λ‖β‖2 +

1

2

N∑
i=1

‖ξi‖2

−
N∑
i=1

m∑
j=1

αi,j (h (xi)βj − Yi,j + ξi,j)

(15)

where βj is the vector of the weights that links hidden layer
to the jth output node of output layer and β = [β1, . . . ,βm],
αi,j is Lagrange multiplier corresponding to the jth output
of ith training sample. Then, we have the following KKT
corresponding optimality conditions:

∂L

∂βj
= 0→ λβj =

N∑
i=1

αi,jh (xi)
> → β =

1

λ
H>α (16)

∂L

∂ξi
= 0→ αi = ξi (17)

∂L

∂αi
= 0→ h (xi)β − Y >i + ξ>i = 0 (18)

where αi = [αi,1, . . . , αi,m]
> and α = [α1, . . . ,αN ]

>.
Substituting Eq. (16) and Eq. (17) into Eq. (18), which can

be written as:(
I +

1

λ
HH>

)
α = Y → α =

(
I +

1

λ
HH>

)−1
Y (19)

where I is identity matrix. Then, by combining Eq. (16) and
Eq. (19), the output weights β of the hidden layer can be
formulated as:

β =
1

λ
H>

(
I +

1

λ
HH>

)−1
Y

= H>
(
λI +HH>

)−1
Y

(20)

Thus, the transition function of our method (output function
of kernel-ELM) can be formulated as Eq. (21)) according to
Eq. (4) and Eq. (20).

f(x) = h(x)H>
(
λI +HH>

)−1
Y (21)

By Combing Eq. (1) and Eq. (21), the transition function of
our method can be rewritten as Eq. (22).

f(x) =

 K (x,x1)
...

K (x,xN )


>

(λI + ΩKSM )
−1
Y (22)

x is the test frame, [x1, ...,xN ] is respected to the element of
explanatory frames, and Y is respected to response frames.
See from Eq. (22), we can find that the proposed model is
only relevant to kernel function, input data xi and the number
of training samples. The kernel similarity embedding is not
related to the number of outputs nodes. Thus our method needs
not to select artificially h(x) and implicitly maps input data
to high dimensional space. Furthermore, feature mapping h(x)
and the dimensionality of the feature space (nodes of hidden
layer) is unknown to users; instead, its corresponding kernel
K(u,v) is given to users. Morever, the Eq. (22) intuitively
shows that kernel similarity matrix is embedded into kernel
similarity embedding, which will effectively use the similarity
prior information for representing DTs.

See Algorithm 1 for a description of the proposed DT
synthesis method. Specifically, algorithm first divides the input
video sequence S1:N (after subtracting temporal mean S) into
two sub-sequences: explanatory frames {Sj , j = 1, · · · , N−1}
and response frames {Sk, k = 2, · · · , N}. Then, the kernel
similarity matrix ΩKSM is learned with respect to Eq. (13) and
Eq. (12), in which it will be embedded into kernel similarity



IEEE TRANSACTIONS ON IMAGE PROCESSING 6

Algorithm 1 Kernel Similarity Embedding for DT Synthesis

Input:
(1) Training video sequences {St, t = 1, · · · , N}
(2) Number of synthesized image sequences L
(3) Kernel function K(u,v)

Output:
(1) Synthesized image sequences {S̃l, l = 1, · · · , L}

1: Caculate the temporal mean S of St.
2: Let St ← St − S, t = 1, · · · , N .
3: Initialize {S̃l}, for l = 1, · · · , L.
4: Define explanatory frames {Sj , j = 1, · · · , N − 1} and

response frames {Sk, k = 2, · · · , N} using training video
sequences.

5: Calculate ΩKSM and (λI + ΩKSM )
−1
Y according to

Eq. (12) and Eq. (13).
6: repeat
7: Calculate S̃l = f(S̃l−1) by Eq. (22), l > 1.
8: Let S̃l ← S̃l + S.
9: Let l← l + 1

10: until l = L

embedding for representing DT. Finally, the endless sequences
{s′t}t=2,3,... (after adding temporal mean S) can be generated
iteratively with pre-trained model according to Eq. (22).

In fact, the dimensionality D of explanatory frames and
response frames is equal, and thus n = m = D. During training,
the computational complexity of our method is O

(
D2N2

)
,

including N × N kernel operation, an inverse operation,
and matrix multiplication. During testing, the computational
complexity of our method is O (DN), including N kernel
operation and matrix multiplication.

C. Analysis of Kernel Similarity Embedding

1) Intuitive Insight: DT videos exhibit statistical stationarity
in the spatial domain and stochastic repetitiveness in the
temporal dimension, which is the key cue for distinguishing
DT videos from other videos and static images [1], [7], [11],
[44]. Moreover, this cue can be further elaborated as the
similarity correlation between frame-to-frame, as shown in
Figure 1. Therefore, what we need to do for DT synthesis is
that we should build a DT model for presenting the features of
dynamics and texture elements, which are statistically similar
and temporally stationary. Here we integrate kernel learning
and ELM into a powerfully unified DT synthesis model to
learn kernel similarity embedding for achieving this goal.

Our method represents such features with a kernel similarity
matrix, which is embedded into kernel similarity embedding.
To intuitively analyze this mechanism, we visualize the learned
kernel similarity matrices of some DT sequences (200 frames
for each sequence) in the Dyntex dataset after training, as
shown in Figure 3. The kernel similarity matrices of each row
in Figure 3 are learned from different DT sequences of the same
class, e.g., elevator, waterfall, rotating wind ornament, flowers
swaying with current, water wave and spring water, which are
existing mostly in everyday surroundings. The different DT

(a) Elevator

(b) Rotating wind ornament

(c) Flowers swaying with current

(d) Waterfall

(e) Water wave

(f) Spring water

Fig. 3: Visualization of kernel similarity matrices of DTs are
displayed. For each row, the first image is the frame of a DT
video, and the other three are the kernel similarity matrices
learned from different DT sequences of the same class.

sequences of the same class are acquired with different views
or different time periods. See from Figure 3, kernel similarity
matrices of our method elegantly represent the similarity
correlation of DT videos. Specifically, the repetitiveness and
stationarity of DT of the elevator, rotating wind ornament
and flowers staying with current, are clearly exhibited by the
learned matrices. As for waterfall, water wave, and spring
water, although these objects originally have not obvious
repetitiveness influenced by natural factors, kernel similarity
matrices consistently exhibit the statistical stationarity and
similarity for different DT videos of the same class. To this
end, kernel similarity embedding well mines and exploits the
similarity prior knowledge for representing DT using kernel
similarity matrix, which will well overcome the challenge
of high-dimensionality and small sample issues. That is, the
representation features of our method are discriminative, which
makes the proposed method can generate high-fidelity, long-
term DT videos.

2) Theoretical Insight: In fact, kernel similarity embedding
for DT synthesis can be view as the kernel embedding of
conditional distribution for regression problem, where the
feature vector Φ = [φ (y1) , . . . , φ (yN )]

> (Φ is mapping



IEEE TRANSACTIONS ON IMAGE PROCESSING 7

function) in reproducing kernel Hilbert space (RKHS) is
substituted by Y = [y1, . . . ,yN ]> in original data domain.
The key idea of kernel embedding of conditional distribution
is to map conditional distributions into infinite-dimensional
feature spaces using kernels, such that we can ultimately capture
all the statistical features of arbitrary distributions and high-
dimensional data [45], [46]. Its formulation is shown as:

µ̂Y |x =

N∑
i=1

φ (yi)Wi(x) = W (x)Φ

= K:x(G+ λI)−1Φ

(23)

where K:x = [k (x,x1) , . . . , k (x,xN )], G is the Gram matrix
for samples from variable X , W (x) = [W1, . . . ,WN ]

> is
non-uniform weight vector determined by the value x of the
conditioning variable. Indeed, this non-uniform weight vector
reflect the effects of conditioning on the embedding. As for
kernel similarity embedding, it can be rewritten as Eq. (24)
according to Eq. (22).

f(x) =

 K (x,x1)
...

K (x,xN )


>

(λI + ΩKSM )
−1
Y

= W (x)Y

(24)

It is obvious that the synthesized frames are conditioned
by training sample x. To compare Eq. (23) and Eq. (24),
we observed that the kernel similarity embedding for DT is
similar to the kernel embedding for conditional distribution. The
difference is that kernel similarity embedding for DT synthesis
predicts the future frames yi in the original data domain,
while kernel embedding for conditional distribution predicts
the feature φ(yi) in RKHS. To this end, kernel similarity
embedding possesses the properties of kernel embedding
for conditional distribution. Thus it will well represent the
statistical features (e.g., similarity correlation representation)
by modeling nonlinear feature relationships for DT.

IV. EXPERIMENTS AND EVALUATION

In the following sections, we illustrate the implementation
details and parameter setting. Furthermore, we intuitively
analyze the sustainability and generalization of our method.
Finally, we demonstrate, by visual evaluation, time-consuming
and the quantitative evaluation metric, that our method is
superior to 9 baseline methods, including non-neural-network-
based DT synthesis methods and neural-network-based DT
synthesis methods.

A. Implementation Details

In the following experiments, the DT videos were collected
from internet and two benchmark datasets, i.e., Gatech Graphcut
Textures1 [17] and Dyntex2 [47]. These two benchmark datasets
are publicly available and have been widely used in recent
publications [1], [7]–[9], [11], [12], [15], [18]–[20]. We resize
the frame size of all DT videos to 150 × 100 pixels, which

1http://www.cc.gatech.edu/cpl/projects/graphcuttextures
2http://projects.cwi.nl/dyntex/database.html

Fig. 4: Performance comparisons between different kernel
functions used in our method for the videos “rotating wind
ornament" (left) and “windmill" (right). For each category, the
first row displays 6 frames of the observed sequence, and the
other rows display the corresponding frames (left-to-right: 1-th,
100-th, 150-th, 210-th, 230-th, 250-th) of synthesized sequences
generated by our method using different kernel functions (top-
to-bottom: Linear kernel, Rational Quadratic kernel, Polynomial
kernel, Multiquadric kernel, Sigmoid kernel, Gaussian kernel).

is similar to [8] for facilitating direct comparison. Moreover,
we train our model using the first 59 to 200 frames because
the length of the shortest observed sequences is 59 of each
DT sequence. We synthesize a new one with the long-term
frame to observed DT videos for quantitative evaluation. All the
experiments presented in this paper are conducted in MATLAB
2018b under a windows 10 with 64 bit operating system.

In addition, we use two metrics to quantitatively evaluate the
performance of the proposed method, including Peak Signal-
Noise Ratio (PSNR) [48] and Structural SIMilarity (SSIM)
[49]. They are common quantitative evaluation metrics in static
image generation [10], [50], [51], DT synthesis [8], [9], [12]
and other future frame prediction problem [21], [52]. Formally,
PSNR can be written as Eq. (25).

PSNR =
1

L− 1

L∑
t=2

10 log10

2552

MSE
(
Ŝt − St

) (25)

where L is the length of observed sequence, St (t =
2, 3, · · · , L) and Ŝt (t = 2, 3, · · · , L) are the observed video
frames and generated video frames, respectively. Intuitively,
PNSR is presented with the prediction error between observed
sequence and generated sequence. The higher the PSNR is, the
better high-fidelity DT video is generated.

SSIM was originally designed for image quality assessment,
and later is used for providing a perceptual judgment on
similarity between videos. It can be formulated as Eq. (26).

SSIM(x,y) =
(2µxµy + C1) (2σxy + C2)(

µ2
x + µ2

y + C1

) (
σ2
x + σ2

y + C2

) (26)

where x and y are the frame of observed sequence (S) and
generated sequence (Ŝ) respectively; µx and µy are the local
means; σx and σy are the standard deviations; and the σxy is
the cross-covariance for frame x and y; C1 and C2 are smooth
factors. However, SSIM in Eq. (26) is used for evaluating the



IEEE TRANSACTIONS ON IMAGE PROCESSING 8

0 20 40 60 80 100 120 140 160 180 200
Frames

20

40

60

80

100

120

140

160

180

200

220
PS

N
R

Gaussian
Linear
Polynomial

RatQuad
MultiQuad
Sigmoid

0 20 40 60 80 100 120 140 160 180 200
Frames

0.4

0.5

0.6

0.7

0.8

0.9

1

SS
IM

Gaussian
Linear
Polynomial

RatQuad
MultiQuad
Sigmoid

(a) PSNR (b) SSIM

Fig. 5: Quantitative comparison of different kernel functions
(Gaussian: Gaussian kernel; Linear: Linear kernel; Polyno-
mial: Polynomial kernel; RatQuad: Rational Quadratic kernel;
MultiQuad: Multiquadric kernel; Sigmoid: Sigmoid kernel).

similarity between two frames. For evaluating whole video
sequence, the mean of SSIM is used, as shown in Eq. (27).

SSIM(S, Ŝ) =
1

L− 1

L∑
t=2

SSIM
(
St, Ŝt

)
(27)

Obviously, SSIM ranges from -1 to 1 with a larger score
indicating greater similarity. A larger SSIM indicates a better
synthesis quality due to higher perceptual similarity between
the synthesized and observed sequences. Therefore, SSIM used
in this paper according to Eq. (27).

B. Experiment 1: Hyper-Parameters Selection

In principle, there are two hyper-parameters influencing
the performance of our proposed method: the kernel function
K(u, v) (in Eq. (22)) and the regularization factor λ of kernel
similarity embedding (in Eq. (22)). As the kernel function
selection is important for kernel learning [8], [53], [54]
and it can directly affect the stability of our method, we
comprehensively test whole effects on the overall performance
for obtaining the optimal solution at the beginning. Moreover,
due to the regularization factor λ and kernel size γ interfere
with the stability of leaning for kernel similarity embedding
and impairs the generalization performance of our model, we
also deal with the optimal selections of λ and γ.

1) Kernel Function K(u, v): In fact, most DT sequences lie
in nonlinear manifolds containing different data modalities in
their appearance distribution, structure dimension, and stochas-
tic repetitiveness, which are difficult to describe using low-
dimensional latent variables with linear observation functions.
Furthermore, the kernel function effectively represents the
similarity correlation between different frames with Euclidean
distance. Therefore, a kernel function is critical for kernel
similarity embedding to make use of similarity prior knowledge
in this work. Here we take several generic kernel functions (e.g.,
Linear kernel, Polynomial kernel, Gaussian kernel, Rational
Quadratic kernel, Multiquadric kernel, and Sigmoid kernel) for
testing and select the optimal one for our model.

For evaluation, we test different kernel functions for our
method on the Dyntex dataset. As shown in Figure 5, the
different kernel function exhibit various performance. Gaussian
and Rational Quadratic kernel functions outperforms other

0
2-30

2-26

50

2-22
218

2-18

P
S

N
R

214

100

2-14 210
2-10 26

150

222-6
2-22-2

2-622
2-10

26
2-14

210 2-18

0.7
2-30

2-26

0.8

2-22
218

2-18

S
S

IM

214

0.9

2-14 210
2-10 26

222-6

1

2-22-2
2-622

2-10
26 2-14

210 2-18

(a) PSNR (b) SSIM

Fig. 6: Quantitative comparison of various regularization factors
λ and kernel size γ used in our method on the whole Dyntex.

frame of sample original λ = 2−20, γ = 108 λ = 24, γ = 28

(a) Windmill

frame of sample original λ = 2−20, γ = 28 λ = 24, γ = 28

(b) Rotating

Fig. 7: Demonstrating the regularization ability of regularization
factor λ. We display the corresponding kernel similarity
matrices on two samples with different λ values: (λ = 2−20

shows under-regularization; λ = 24 shows over-regularization).

kernel functions with better PSNR and SSIM scores, which
show that our method can synthesize more high-quality DT
sequences using these two kernel functions. Furthermore, the
Gaussian kernel function still achieves better performance after
200 frames of synthesized DT videos, which do not exist
in the training frames. This shows that the Gaussian kernel
function may be fit for our method with better generalization
performance. Meanwhile, we display different frames of
two synthesized DT sequences (rotating wind ornament and
windmill) with different kernel functions, as shown in Figure
4. Intuitively, the frames of synthesized DTs using Gaussian
kernel, Multiquadric kernel, and Rational Quadratic kernel are
realistic, while other kernels are failed (especially after 200
frames). In summary, the Gaussian kernel achieved better perfor-
mance of DT quality and sustainability. Therefore, we integrate
the Gaussian kernel function (K(u, v) = exp(−γ‖u − v‖2))
with ELM into a powerfully unified DT synthesis system to
learn kernel similarity embedding for representing the spatial-
temporal transition of DT videos in the later experiments.

2) Regularization Factor λ, Kernel Size γ: According to
ridge regression theory [60], we add a positive value λI (I is
identity matrix) to the diagonal axis of kernel similarity matrix
(Eq. 22) for learning a more stable and better generalization
performance of DT synthesis model. Furthermore, it is known
that the performance of SVM is sensitive to the combination of
the regularization factor and kernel size (λ, γ) [42]. Therefore,



IEEE TRANSACTIONS ON IMAGE PROCESSING 9

(a) Flame

(b) Rotating wind ornament

(c) Water wave

(d) Bulb

(e) Flowers swaying with current

(f) Windmill

Fig. 8: Synthesizing long-term DT sequences using our method.
For each category, the first row displays the 11 frames
of the observed sequence (black frame denotes lacking the
corresponding frame of observed sequence), and the second
row displays the corresponding frames of synthesized videos.
From left to right, the columns are the 2-nd, 100-th, 200-th,
300-th, 400-th, 500-th, 600-th, 700-th, 800-th, 900-th, 1000-th
frames of observed sequences and synthesis sequences.

we also simultaneously analyze the influence of these two
parameters (λ, γ) for our method.

To achieve good generalization performance of our method,
the regularization factor λ, and the kernel size γ of the model
need to be chosen appropriately. We have tried a wide range
of λ and γ. Specifically, we have used 21 different value
of λ = {2−30, 2−28, · · · , 28, 210}) and 19 different values
of γ = {2−18, 2−16, · · · , 216, 218}) for evaluation on Dyntex
dataset, resulting in a total of 399 pairs of (λ, γ), as shown in
Figure 6. See from Figure 6, we can find that the performance
of our method will be stable in two time periods (period
1:λ < 10−14, period 2:λ > 102), which show that our method
is over-fitting and under-fitting respectively. Note that when λ
is small, the PSNR can not be stable (see Figure 6(a)) because
PSNR ∝ +∞ when some generated frames are extremely
similar to observed frames. The regularization of the model is
insufficient if regularization factor λ is too small, which results
that the DT synthesis model is overly confident to the training
frames (the first 200 frames) and fails to generate high-quality
DT frames after 200 frames. However, if a too large λ is used,
the model is over-regularized, which leads that the stationarity
and repetitiveness of DT are smoothed overly. That is, the weak
correlation between different frames is excessively decreased
(see Figure 7). Figure 6 also show that the kernel size γ also
closely interferes with the regularization ability of λ. We can
observe that the PSNR and SSIM are not sensitive to γ while

0 100 200 300 400 500 600 700 800 900 1000
Frames

10

20

30

40

50

60

70

80

90

PS
N

R

windmill
rotating wind ornament
water wave
flowers swaying with current
bulb
flame

0 100 200 300 400 500 600 700 800 900 1000
Frames

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

SS
IM

windmill
rotating wind ornament
water wave
flowers swaying with current
bulb
flame

(a) PSNR (b) SSIM

Fig. 9: Demonstrate the sustainability of our method with
quantitative evaluation on 6 DT videos.

λ is small, but relatively large γ seems better. Therefore, the
optimal combination of (λ, γ) of our method with Gaussian
kernel is chosen for later experiments (λ = 10−10, γ = 108).

C. Experiment 2: Sustainability Analysis

DT synthesis aims to generate high-quality, long-term DT
sequences, which requires that we should design a synthesis
method with good sustainability performance that mainly refers
to no obvious visual decays, divergences, and abrupt jump
for generated long-term sequences. Therefore, we intuitively
analysis the sustainability of our method using visual quality
and quantitative evaluation metrics on two datasets.

For evaluation, the visual quality comparison over several
synthesized DT sequences of the different classes is presented
in Figure 8. To show the robustness of our method, we train
the model using the first 200 frames if the length of observed
sequences is longer than 200, and otherwise, the whole frames
of observed sequences are used for training. We can observe
that our method not only generates high-fidelity DTs in short-
term, but also generates high-quality DTs in long-term even if
the observed sequences are short, e.g. flame (l = 88), rotating
wind ornament (l = 250), water wave (l = 250), bulb (l =
556), flowers swaying with current (l = 848), windmill (l =
962). Note that Figure 8(a) seemingly shares with similar
DT (from 100-th to 1000-th), because these generated frames
locate in similar/same cycle. Furthermore, our method still
keeps synthesizing the realistic DT (including the details) in
the long-term, e.g., the flag in sample “windmill” exhibits its
dynamic in long-term generated sequences.

Indeed, we also show the quantitative evaluation results to
demonstrate the sustainability of our method. Here we report
the mean SSIM and PSNR in terms of frames (from 1 to 848)
of 6 observed sequences that used in the former visual quality
evaluation. See from Figure 9, our method achieves desired
mean PSNR and SSIM, which show that it synthesized high-
fidelity DTs. Although the mean PSNR and SSIM decrease as
the number of generated frames increasing for some DT videos
(e.g., windmill, frame), they are still huge (PSNR > 18 dB,
SSIM > 0.69). Notably, our method achieved extensive SSIM
index with 1 for whole long-term sequences just using 200
frames for training (e.g., flowers swaying with current, bulb,
water wave), which suggests that its generated videos almost
as same as the observed sequences. These results prove that
our method accurately exhibits the statistical stationarity in the



IEEE TRANSACTIONS ON IMAGE PROCESSING 10

(a) Running cows

(b) Running tigers (c) Running llamas

Fig. 10: Sythesizing DTs by transferring the trained model using our method. For the running cows, the first row displays the
20 frames of 5 observed sequences, the other rows display the frames of the synthesized sequences corresponding to the first
row with different trained model (from top to bottom: trained on cow1, trained on cow2, trained on cow3, trained on cow4,
trained on cow5). For the running tiger and running llamas, they are similar to the running cows, but they just use 2 observed
sequences for training and testing.

spatial domain and the stochastic repetitiveness in the temporal
dimension of DT sequences using kernel similarity embedding,
and thus it can synthesize realistic DTs in long-term.

D. Experiment 3: Generalization Analysis

Good generalization performance is a key goal for all
learning tasks. Similar to [12], we also specialize in our method
to learn roughly aligned DT videos, which are non-stationary in
either the spatial or temporal domain. In this study, it is different
from [12] by training a model using all roughly aligned with
video sequences for one example (e.g., 5 training sequences
for the running cow). Our method trains a model just using
one video sequence for one example, which may effectively
verify the generalization performance of our method.

Spatially aligned with the sense for each time step, the
target objects in different videos possess the same locations,
shapes, and poses, while it is the same as temporally aligned
with the starting and ending times of the actions in different
videos. We take the DT videos that were used in [12] for
evaluation. See from figure 10, the 3 results of modeling and
synthesizing DTs from roughly aligned video sequences are
displayed. Specifically, we firstly trained a model on each
sequence of the running cows/tigers/llamas, and then test the
5/2/2 trained models on the 5/2/2 observed sequences. Thus,
we gain 33 realistic, synthesized sequences.

The experiment results show that our method can transfer
the trained model to generate new sequences for other spatial-
temporally aligned DT sequences. In summary, our method is
effective and efficient for synthesizing realistic appearances and
motions of the test animals, which suggests that our method
performs excellent generalization performance. Indeed, the part
of transferred model could not synthesize consistent motions
for some cows (e.g., cow1→cow2), because these samples are
not aligned initially well.

E. Experiment 4: Comparisons to State-of-the-Arts

In this section, we compare our method with 9 state-of-the-
art methods of DT synthesis, including non-neural-network-
based methods(LDS [1], FFT-LDS [19], HOSVD [15], SLDS
[20], Kernel-DT [18] and KPCR [8]) and neural-network-based
methods (TwoStream3 [11], STGCN4 [12] and DG5 [22]). To
better verify and validate the performance of our method,
we simultaneously leverage the quantitative evaluation metric
(SSIM, PSNR), time-consuming and vision quality.

Specifically, we first compare our method with 6 non-neural-
network-based methods, including FFT-LDS [19], HOSVD
[15], KPCR [8], LDS [1], SLDS [20], Kernel-DT [18]. To
facilitate direct comparison, we tested all these models with
150×100 pixels using 17 gray DT videos on PSNR and SSIM.
See from Table I, our method attained the best performance on
most of DT sequences, except for the videos of flashing lights
and beach. That is because these two videos lack good spatial-
temporal characteristic of DT. Notably, the proposed method
beats the second-best results by a large margin (19.017 dB for
average PSNR and 0.153 for average SSIM on 17 DT videos).
Our method also achieves an significant SSIM index with 1
for some DT videos (e.g., bulb, fountain, spring water, etc.).
Therefore, one can learn that our method can make full use of
the similarity pror knowledge for DT synthesis using kernel
similarity embedding. Indeed, all methods fail to synthesize
high-quality DT video for rotating wind ornament, because
this sample is originally blurry.

Then, our model is compared with 3 neural-network-based
methods, such as TwoStream [11] and STGCN [12] and DG
[22] on 6 DT videos (e.g., elector , flashlights and beach, etc).
For a fair comparison, we display 6 same index frames of

3https://ryersonvisionlab.github.io/two-stream-projpage/
4http://www.stat.ucla.edu/ jxie/STGConvNet/STGConvNet.html
5http://www.stat.ucla.edu/jxie/DynamicGenerator/DynamicGenerator.html



IEEE TRANSACTIONS ON IMAGE PROCESSING 11

TABLE I: COMPARISON WITH NON-NEURAL-NETWORK-BASED DT SYNTHESIS METHODS ON PSNR (dB) AND SSIM.

Ours FFT-LDS [19] HOSVD [15] KPCR [8] LDS [1] SLDS [20] Kernel-DT [18]
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

boiling water 36.591 0.958 27.570 0.887 27.617 0.891 24.726 0.840 27.604 0.891 27.604 0.891 26.114 0.870
elevator 46.149 0.996 34.307 0.949 34.289 0.946 31.029 0.913 34.420 0.952 34.384 0.951 30.109 0.893
rotating wind ornament 15.882 0.564 13.387 0.500 12.644 0.473 15.038 0.569 13.387 0.500 13.387 0.500 12.131 0.459
flower in current 47.609 0.999 30.372 0.922 31.778 0.949 37.069 0.988 31.392 0.946 30.922 0.937 27.297 0.891
bulb 49.445 1.000 31.229 0.958 31.236 0.972 28.024 0.957 31.350 0.972 31.350 0.972 29.788 0.978
flashing lights 17.874 0.748 26.714 0.875 26.712 0.876 22.242 0.796 26.724 0.878 26.724 0.878 25.668 0.788
spring water 64.198 1.000 21.435 0.607 21.363 0.606 21.271 0.641 21.453 0.610 21.453 0.610 21.211 0.643
washing machine 33.399 0.960 30.875 0.931 30.865 0.933 28.630 0.905 30.913 0.934 30.913 0.934 26.391 0.902
fountain 68.641 1.000 19.567 0.401 19.554 0.401 18.394 0.357 19.569 0.402 19.569 0.402 18.745 0.382
water spray 43.215 0.994 29.387 0.880 29.683 0.890 30.740 0.917 29.483 0.889 28.654 0.878 25.565 0.846
water spray in a pool 67.475 1.000 21.076 0.426 21.036 0.423 20.603 0.433 21.079 0.427 21.079 0.427 19.483 0.394
water wave 51.840 0.999 27.385 0.650 27.311 0.646 27.767 0.745 27.394 0.651 27.394 0.651 22.371 0.537
waterfall 44.708 0.998 39.649 0.991 43.240 0.998 45.337 0.999 41.310 0.996 41.310 0.996 27.073 0.955
waterfall in a mountain 71.851 1.000 18.509 0.539 18.507 0.540 18.408 0.534 18.513 0.540 18.513 0.540 18.303 0.535
flag 53.605 1.000 23.839 0.858 23.797 0.859 20.537 0.802 23.840 0.859 23.840 0.859 23.068 0.854
flame 46.185 0.910 27.567 0.874 27.463 0.867 26.974 0.904 27.558 0.877 26.435 0.857 33.495 0.887
beach 22.736 0.719 26.684 0.838 31.017 0.899 33.148 0.942 26.779 0.846 26.779 0.846 29.251 0.905
mean 45.965 0.932 26.444 0.770 26.948 0.775 26.467 0.779 26.633 0.775 26.489 0.772 24.474 0.748

TABLE II: COMPARISON WITH STATE-OF-THE-ART DT SYNTHESIS METHODS ON TIME-CONSUMING.

Ours FFT-LDS [19] HOSVD [15] KPCR [8] LDS [1] SLDS [20] Kernel-DT [18] TwoStream [11] STGCN [12] DG [22]
Train. time (Sec.) 0.090 0.928 1.399 1.990 0.148 2.475 0.830 - 4188 3904.418
Test time (Sec.) 26.060 5.516 4.922 12.214 4.048 3.799 1007.260 8235 7.210 52.292
Generated frames 1200 1200 1200 1200 1200 1200 1200 12 70 120
Using GPU × × × × × × × X X X
FPS 46.040 217.560 243.790 98.248 296.450 315.900 1.191 0.002 9.709 2.295

generated sequences. See from Figure 11, the DT sequences
generated by TwoStream are divergent because the TwoStream
method has a limitation that it cannot well synthesize DTs not
being spatially homogeneous (e.g., elevator, water spray). As for
STGCN and DG, the DT sequences generated by them appear
blurred because these two methods lie on more training data.
Intuitively, our method generated high-fidelity DT sequences,
including realistic details of DTs.

Finally, we report the time-consuming of different DT
synthesis methods including neural-network-based methods and
non-neural-network-based methods. As shown in Table II, our
method can satisfy the real-time (25 fps) generation with 46.040
fps as well as non-neural-network-based methods (except
for Kernel-DT), while the neural-network-based methods are
failed. Moreover, the neural-network-based methods are time-
consuming and computationally expensive for training. In
summary, our method powerfully synthesizes high-quality DT
videos with fast speed and low computation superior to the state-
of-the-art DT methods, which benefits from the discriminative
representation of kernel similarity embedding for exhibiting
the spatial-temporal transition of DTs. It directly shows that
the similarity correlation of different frames is a critical prior
knowledge for DT synthesis.

V. DICUSSION

In this study, we propose a novel DT synthesis method
to address the high-dimensionality and small sample issues
for DT synthesis. Specifically, our method leverages a kernel
similarity matrix to mine and capture the similarity prior
knowledge of DT, which is embedded into kernel similarity
embedding. Then, high-fidelity DTs are synthesized iteratively
by learned model. Notably, our method is dissimilar to the

existing kernel-based DT synthesis methods [8], [18], [55],
which use kernel function to learn a nonlinear observation
function for dimensionality-reduction. The experimental results
on well-known benchmark datasets show that the similarity
correlation is a critical prior knowledge for representing DT
and the kernel similarity embedding effectively solves the
aforementioned issues. Thus our method can achieve promising
results of DT synthesis.

For evaluating our method, we intuitively and theoretically
analyzed the effectiveness of kernel similarity embedding
for DT synthesis (Section III-C). Then, we evaluated the
influence of the selection of kernel function, the regularization
factor λ and the kernel size γ (Section IV-B). Meanwhile, we
intuitively validated the sustainability and generalization of our
method using vision quality and quantitative evaluation metrics
(Section IV-C and Section IV-D). Eventually, we took our
method to compare with 9 state-of-the-art methods (including
neural-network-based methods and non-neural-network-based
methods) (Section IV-E).

Although our method has achieved promising results, it
has a limitation that the sustainability is impacted if DTs
lack of stochastic repetitiveness in the temporal dimension
(e.g., waterfall, spring water). See from Figure 12, our method
falls in visual decay after 200 frames, and thus it fails to
synthesize high-fidelity DTs for the long-term. In the future,
the scalable kernel similarity embedding may be a potential
choice to overcome this limitation. Because scalable kernel
similarity embedding could adjust the similarity representation,
and thus the statistical stationarity in the spatial domain and
stochastic repetitiveness in the temporal dimension can be
artifically controled.



IEEE TRANSACTIONS ON IMAGE PROCESSING 12

(a) Elevator (b) Flowers swaying

(c) Flash lights (d) Water wave

(e) Spring water (f) Water spray

Fig. 11: Visual quality comparison between three neural-
network-based methods and our method for 6 different DT
videos. For each category, the first row displays 6 frames
of the observed sequence, and the other rows display the
corresponding frames of synthesized sequences generated
by different methods (from top to bottom: TwoStream [11],
STGCN [12], DG [22] and our method).

VI. CONCLUSION

In this paper, we proposed a novel DT synthesis method that
integrates kernel learning and extreme learning machine into a
powerfully unified synthesis method to learn kernel similarity
embedding for representing DT. Notably, kernel similarity
embedding not only effectively address the high-dimensionality
and small sample issues using similarity prior knowledge, but
also has the advantage of modeling nonlinear representation
feature relationship for DT. The competitive results on DT
videos collected from two benchmark datasets and the internet
demonstrate the superiority and great potentials of our method
for DT synthesis. It also shows obvious advantages over all
the compared state-of-the-art approaches.

In the future, we will design a more effective learning model
to learn scalable kernel similarity embedding for DT synthesis,
because scalable kernel similarity embedding will effectively
control the similarity representations of DT. Furthermore, we
will also adopt multi-view methods into DT synthesis as some
DT sequences were acquired with the moving camera and
different views (e.g., some DT videos in Dyntex).

REFERENCES

[1] G. Doretto, A. Chiuso, Y. N. Wu, and S. Soatto, “Dynamic textures,”
International Journal of Computer Vision, vol. 51, no. 2, pp. 91–109,
2003.

[2] Y. Wang and S.-C. Zhu, “A generative method for textured motion:
Analysis and synthesis,” in Proc. ECCV, 2002, pp. 583–598.

(a) Waterfall

(b) Spring water

(c) Flag

Fig. 12: Displaying some generated frames of DT sequences
with limitation of our method. For each category, the first
row displays the 11 frames of the observed sequence (black
frame denotes lacking the corresponding frame of observed
sequence), and the second row displays the corresponding
frames of synthesized videos by our method. From left to right,
the columns are the 2-nd, 100-th, 200-th, 300-th, 400-th, 500-
th, 600-th, 700-th, 800-th, 900-th, 1000-th frames of observed
sequences and synthesis sequences.

[3] C. Feichtenhofer, A. Pinz, and R. P. Wildes, “Temporal residual networks
for dynamic scene recognition,” in Proc. CVPR, 2017, pp. 4728–4737.

[4] A. B. Chan and V. Nuno, “Modeling, clustering, and segmenting video
with mixtures of dynamic textures,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 30, no. 5, pp. 909–926, 2008.

[5] A. Mumtaz, W. Zhang, and A. B. Chan, “Joint motion segmentation and
background estimation in dynamic scenes,” in Proc. CVPR, 2014, pp.
368–375.

[6] C.-C. Hsu, L.-W. Kang, and C.-W. Lin, “Temporally coherent superresolu-
tion of textured video via dynamic texture synthesis,” IEEE Transactions
on Image Processing, vol. 24, pp. 919–931, 2015.

[7] L. A. Gatys, A. S. Ecker, and M. Bethge, “Texture synthesis using
convolutional neural networks,” in Proc. NeurIPS, 2015, pp. 262–270.

[8] X. You, W. Guo, S. Yu, K. Li, J. C. Príncipe, and D. Tao, “Kernel
learning for dynamic texture synthesis,” IEEE Transactions on Image
Processing, vol. 25, no. 10, pp. 4782–4795, 2016.

[9] J. Xie, S.-C. Zhu, and Y. N. Wu, “Synthesizing dynamic patterns by
spatial-temporal generative ConvNet,” in Proc. CVPR, 2017, pp. 7093–
7101.

[10] Q. Chen and V. Koltun, “Photographic image synthesis with cascaded
refinement networks,” in Proc. ICCV, 2017, pp. 1511–1520.

[11] M. Tesfaldet, M. A. Brubaker, and K. G. Derpanis, “Two-stream
convolutional networks for dynamic texture synthesis,” in Proc. CVPR,
2018, pp. 6703–6712.

[12] J. Xie, S.-C. Zhu, and Y. N. Wu, “Learning energy-based spatial-temporal
generative convnets for dynamic patterns,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, 2019. [Online]. Available:
http://doi.org/10.1109/TPAMI.2019.2934852

[13] V. Pegoraro and S. G. Parker, “Physically-based realistic fire rendering,”
in Proc. NPH, 2006, pp. 51–59.

[14] A. Nealen, M. Müller, R. Keiser, E. Boxerman, and M. Carlson,
“Physically based deformable models in computer graphics,” Computer
Graphics Forum, vol. 25, no. 4, pp. 809–836, 2006.

[15] R. Costantini, L. Sbaiz, and S. Süsstrunk, “Higher order svd analysis
for dynamic texture synthesis,” IEEE Transactions on Image Processing,
vol. 17, pp. 42–52, 2008.

[16] A. Schödl, R. Szeliski, D. Salesin, and I. A. Essa, “Video textures,” in
Proc. SIGGRAPH, 2000, pp. 489–498.

[17] V. Kwatra, A. Schödl, I. A. Essa, G. Turk, and A. F. Bobick, “Graphcut
textures: image and video synthesis using graph cuts,” ACM Transactions
on Graph, vol. 22, pp. 277–286, 2003.

[18] A. B. Chan and N. Vasconcelos, “Classifying video with kernel dynamic
textures,” 2007, pp. 1–6.

[19] B. Abraham, O. I. Camps, and M. Sznaier, “Dynamic texture with fourier
descriptors,” in Proc. the 4th International Workshop on Texture Analysis,
2005, pp. 53–58.

http://doi.org/10.1109/TPAMI.2019.2934852


IEEE TRANSACTIONS ON IMAGE PROCESSING 13

[20] S. M. Siddiqi, B. Boots, and G. J. Gordon, “A constraint generation
approach to learning stable linear dynamical systems,” in Proc. NeurIPS,
2007, pp. 1329–1336.

[21] S. Tulyakov, M.-Y. Liu, X. Yang, and J. Kautz, “MoCoGAN: Decom-
posing motion and content for video generation,” in Proc. CVPR, 2018,
pp. 1526–1535.

[22] J. Xie, R. Gao, Z. Zheng, S.-C. Zhu, and Y. N. Wu, “Learning dynamic
generator model by alternating back-propagation through time,” in Proc.
AAAI, 2019, pp. 5498–5507.

[23] S. Chen, Y. Wang, C.-J. Lin, W. Ding, and Z. Cao, “Semi-supervised
feature learning for improving writer identification,” Information Sciences,
vol. 482, pp. 156–170, 2019.

[24] Z. Zheng, X. Yang, Z. Yu, L. Zheng, Y. Yang, and J. Kautz, “Joint
discriminative and generative learning for person re-identification,” in
Proc. CVPR, 2019, pp. 2138–2147.

[25] D. Cheng, Y. Gong, S. Zhou, J. Wang, and N. Zheng, “Person re-
identification by multi-channel parts-based cnn with improved triplet loss
function,” in Proc. CVPR, 2016, pp. 1335–1344.

[26] Y. Fu, Y. Wei, G. Wang, X. Zhou, H. Shi, and T. S. Huang, “Self-similarity
grouping: A simple unsupervised cross domain adaptation approach for
person re-identification,” in Proc. ICCV, 2019, pp. 6112–6121.

[27] A. Hermans, L. Beyer, and B. Leibe, “In defense of the triplet loss for
person re-identification,” arXiv preprint arXiv:1703.07737, 2017.

[28] M. Lin, R. Ji, H. Liu, X. Sun, Y. Wu, and Y. Wu, “Towards optimal
discrete online hashing with balanced similarity,” in Proc. AAAI, 2019,
pp. 8722–8729.

[29] H. Liu, R. Ji, Y. Wu, F. Huang, and B. Zhang, “Cross-modality binary
code learning via fusion similarity hashing,” in Proc. CVPR, 2017, pp.
6345–6353.

[30] W. Liu, J. Wang, R. Ji, Y.-G. Jiang, and S.-F. Chang, “Supervised hashing
with kernels,” in Proc. CVPR, 2012, pp. 2074–2081.

[31] F. Çakir and S. Sclaroff, “Adaptive hashing for fast similarity search,”
in Proc. ICCV, 2015, pp. 1044–1052.

[32] J. Shawe-Taylor and N. Cristianini, Kernel Methods for Pattern Analysis.
Cambridge: Cambridge University Press, 2004.

[33] G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, “Extreme learning machine: a
new learning scheme of feedforward neural networks,” in Proc. IJCNN,
2004, pp. 985–990.

[34] G.-B. Huang, H. Zhou, X. Ding, and R. Zhang, “Extreme learning
machine for regression and multiclass classification,” IEEE Transactions
on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 42, pp.
513–529, 2012.

[35] J. Tang, C. Deng, and G.-B. Huang, “Extreme learning machine for
multilayer perceptron,” IEEE Transactions on Neural Networks and
Learning Systems, vol. 27, pp. 809–821, 2016.

[36] L. L. C. Kasun, Y. Yang, G.-B. Huang, and Z. Zhang, “Dimension
reduction with extreme learning machine,” IEEE Transactions on Image
Processing, vol. 25, pp. 3906–3918, 2016.

[37] C. Deng, S. Wang, Z. Li, G.-B. Huang, and W. Lin, “Content-insensitive
blind image blurriness assessment using weibull statistics and sparse
extreme learning machine,” IEEE Transactions on Systems, Man, and
Cybernetics: Systems, vol. 49, pp. 516–527, 2019.

[38] M. Saito, E. Matsumoto, and S. Saito, “Temporal generative adversarial
nets with singular value clipping,” 2017, pp. 2849–2858.

[39] X. Xing, T. Han, R. Gao, S.-C. Zhu, and Y. N. Wu, “Unsupervised
disentangling of appearance and geometry by deformable generator
network,” in Proc. CVPR, 2019, pp. 10 354–10 363.

[40] Y. Zhou and T. L. Berg, “Learning temporal transformations from time-
lapse videos,” in Proc. ECCV, 2016, pp. 262–277.

[41] P. L. Bartlett, “The sample complexity of pattern classification with
neural networks: The size of the weights is more important than the size
of the network,” IEEE Transactions on Information Theory, vol. 44, pp.
525–536, 1996.

[42] J. A. K. Suykens and J. Vandewalle, “Least squares support vector
machine classifiers,” Neural Processing Letters, vol. 9, pp. 293–300,
1999.

[43] A. E. Hoerl and R. W. Kennard, “Ridge regression: biased estimation
for nonorthogonal problems,” Technometrics, vol. 42, no. 1, pp. 80–86,
2000.

[44] B. Ghanem and N. Ahuja, “Maximum margin distance learning for
dynamic texture recognition,” in Proc. ECCV, 2010, pp. 223–236.

[45] L. Song, J. Huang, A. J. Smola, and K. Fukumizu, “Hilbert space
embeddings of conditional distributions with applications to dynamical
systems,” in Proc. ICML, 2009, pp. 961–968.

[46] L. Song, K. Fukumizu, and A. Gretton, “Kernel embeddings of con-
ditional distributions: A unified kernel framework for nonparametric

inference in graphical models,” IEEE Signal Processing Magazine, vol. 30,
no. 4, pp. 98–111, 2013.

[47] R. Péteri, S. Fazekas, and M. J. Huiskes, “Dyntex: A comprehensive
database of dynamic textures,” Pattern Recognition Letters, vol. 31, pp.
1627–1632, 2010.

[48] Z. Wang and A. C. Bovik, “Mean squared error: Love it or leave it? a
new look at signal fidelity measures,” IEEE Signal Processing Magazine,
vol. 26, pp. 98–117, 2009.

[49] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image
quality assessment: from error visibility to structural similarity,” IEEE
Transactions on Image Processing, vol. 13, no. 4, pp. 600–612, 2004.

[50] D. Liu, Z. Wang, B. Wen, J. Yang, W. Han, and T. S. Huang, “Robust
single image super-resolution via deep networks with sparse prior,” IEEE
Transactions on Image Processing, vol. 25, pp. 3194–3207, 2016.

[51] X. Liu, D. Zhai, R. Chen, X. Ji, D. Zhao, and W. Gao, “Depth super-
resolution via joint color-guided internal and external regularizations,”
IEEE Transactions on Image Processing, vol. 28, pp. 1636–1645, 2019.

[52] W. Xiong, W. Luo, L. Ma, W. Liu, and J. Luo, “Learning to generate time-
lapse videos using multi-stage dynamic generative adversarial networks,”
in Proc. CVPR, 2018, pp. 2364–2373.

[53] X. Liu, X. Zhu, M. Li, L. Wang, C. Tang, J. Yin, D. Shen, H. Wang,
and W. Gao, “Late fusion incomplete multi-view clustering,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 41, pp.
2410–2423, 2018.

[54] X. Liu, M. Li, L. Wang, Y. Dou, J. Yin, and E. Zhu, “Multiple
kernel k-means with incomplete kernels,” IEEE transactions on
Pattern Analysis and Machine Intelligence, 2019. [Online]. Available:
http://doi.org/10.1109/TPAMI.2019.2892416

[55] Z. Zhu, X. You, S. Yu, J. Zou, and H. Zhao, “Dynamic texture modeling
and synthesis using multi-kernel gaussian process dynamic model,” Signal
Processing, vol. 124, pp. 63–71, 2016.

Shiming Chen is currently a full-time Ph.D student in the School of Electronic
Information and Communitaions, Huahzong University of Sciences and
Technology, China. His current research interests include image/video synthesis,
computer vision and machine learning.

Peng Zhang is currently pursuing the Ph.D degree in the School of Electronic
Information and Communications at Huazhong University of Science and
Technology, China. His research interests include computer vision, pattern
recognition, and machine learning.

Xinge You is currently a Professor in School of Electronics Information
and Communications, Huazhong University of Science and Technology. He
received the Ph.D. degree in Department of Computer Science, Hong Kong
Baptist University, in 2004. His research results have expounded in 150+
publications at prestigious journals and prominent conferences, such as IEEE
T-PAMI, T-IP, T-NNLS, T-CYB, T-CSVT, IJCAI, ECCV. His current research
interests include pattern recognition, machine earning, and computer vision.

Xin Liu is currently an Associate Professor with the Department of Computer
Science and Technology, Huaqiao University, China. He received the Ph.D.
degree in computer science from Hong Kong Baptist University, Hong Kong,
in 2013. His research results have expounded in 30+ publications at prestigious
journals and prominent conferences, such as IEEE T-PAMI, T-NNLS, T-IFS,
PR, CVIU, ICASSP, ICME. His current research interests include multimedia
analysis, computer vision, and machine learning.

Zehong Cao is a Lecturer with the Discipline of Information and Communica-
tion Technology, School of Technology, Environments and Design, University
of Tasmania, Australia. He received the Ph.D. degree in information technology
from the University of Technology Sydney, Australia, in 2017. He had an ESI
highly cited paper in 2019 and a string of successful over 30 publications
among the most respected journals, including Nature Scientific Data, IEEE
T-FS, T-NNLS, T-CYB, T-SMCA, etc. His current esearch interests include
computer vision, machine learning, and bio-signal processing.

Dacheng Tao (F’15) is a Professor of computer science and an ARC Laureate
Fellow with the School of Information Technologies and the Inaugural Director
of the UBTECH Sydney Artificial Intelligence Centre, at the University of
Sydney. He mainly applies statistics and mathematics to artificial intelligence
and data science. His research results have expounded in one monograph and
300+ publications at prestigious journals and prominent conferences, such as
IEEE T-PAMI, T-IP, IJCV, JMLR, NeurIPS, ICML, CVPR, ICCV, ECCV; and
the 2017 IEEE Signal Processing Society Best Paper Award. He is a fellow
of the Australian Academy of Science, AAAS, IEEE, IAPR, OSA, and SPIE.

http://doi.org/10.1109/TPAMI.2019.2892416

	Introduction and Motivation
	Background and Related Work
	Non-Neural-Network-Based Methods
	Physics-Based Methods
	Dynamic System Modeling Methods

	Neural-Network-Based Methods

	The Proposed DT Synthesis Method
	Revisiting Extreme Learning Machine
	Kernel Similarity Embedding for DT Synthesis
	Analysis of Kernel Similarity Embedding
	Intuitive Insight
	Theoretical Insight


	Experiments AND Evaluation
	Implementation Details
	Experiment 1: Hyper-Parameters Selection
	Kernel Function K(u,v)
	Regularization Factor , Kernel Size 

	Experiment 2: Sustainability Analysis
	Experiment 3: Generalization Analysis
	Experiment 4: Comparisons to State-of-the-Arts

	dicussion
	Conclusion
	References
	Biographies
	Shiming Chen
	Peng Zhang
	Xinge You
	Xin Liu
	Zehong Cao
	Dacheng Tao


