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a b s t r a c t 

Data augmentation is typically used by supervised feature learning approaches for of- 

fline writer identification, but such approaches require a mass of additional training data 

and potentially lead to overfitting errors. In this study, a semi-supervised feature learn- 

ing pipeline is proposed to improve the performance of writer identification by training 

with extra unlabeled data and the original labeled data simultaneously. Specifically, we 

propose a weighted label smoothing regularization (WLSR) method for data augmenta- 

tion, which assigns a weighted uniform label distribution to the extra unlabeled data. The 

WLSR method regularizes the convolutional neural network (CNN) baseline to allow more 

discriminative features to be learned to represent the properties of different writing styles. 

The experimental results on well-known benchmark datasets (ICDAR2013 and CVL) showed 

that our proposed semi-supervised feature learning approach significantly improves the 

baseline measurement and perform competitively with existing writer identification ap- 

proaches. Our findings provide new insights into offline writer identification. 

© 2019 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

1. Introduction 

Handwritten texts, speech, fingerprints, and faces are often applied in physiological biometric identifiers. Handwrit-

ten text plays an especially important role for forensics and security in proving a person’s authenticity. Research into

writer identification, such as historical document analysis for the mass-digitization process of historical documents 

[24,29,47] through machine learning, has received renewed interest in recent years; unfortunately, this process requires

considerable time and detection costs. Therefore, many researchers have proposed state-of-the-art pattern recognition ap- 

proaches to automatically recognize writing styles [1,7,11,30,43] . 

The aim of writer identification is to search and recognize texts written by the same writer in a query database. Writer

identification has been investigated for different handwritten scripts, such as English [4,39] , Chinese [18,19,46] , Arabic [1] ,

Indic [30] , Persian [20] and Latin scripts [9] . This task generally presents substantial challenges because it requires the

documents to be sorted according to high similarity (e.g., the distance between feature vectors). Writer identification can
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be classified as online writer identification and offline writer identification according to the handwritten document acqui-

sition method. The latter approach can be further categorized into allograph-based and textual-based methods. Textural-

based methods compute global statistics directly from handwritten documents (pages) [3,14,32] ; for example, the angles of

stroke directions, the width of the ink trace, and the histograms of local binary patterns (LBP) and local ternary patterns

(LTP) have been used for writer identification purposes. Allograph-based methods rely on local descriptors computed from

small patches (allographs), and a global document descriptor is statistically calculated using the local descriptors of a sin-

gle document [7,8,18] . These two methods can be further combined to form a discriminative global feature [4,17,46] . The

semi-supervised feature learning pipeline for offline writer identification proposed in this work is based on allographs. 

Although writer identification has achieved excellent performance on some benchmark datasets, there are considerable

challenges in real-world applications. First, the use of different pens, the physical condition of the writer, the presence of

distractions (such as multitasking and noise), and the changes in writing style with age are key factors resulting in the

unsatisfactory performance of writer identification. Second, the writers of the training set are different than those of the

test set, and every writer only contributes a few handwritten text images in the typically used benchmark datasets. Third,

the number of handwritten documents in benchmark datasets is highly insufficient for convolutional neural network (CNN)

model training; therefore, training a reliable CNN model using limited data is a challenge. Moreover, almost all published

methods are based on supervised learning, which cannot achieve landmark results due to the limited amount of labeled

data present in the benchmarks. Some researchers utilize different data augmentation methods to address these problems.

However, these data augmentation methods that are used in writer identification easily lead to model overfitting and require

a considerable amount of extra data. To overcome the aforementioned challenges and then tightly integrate with writer

identification in practice, we propose a novel insight for writer identification. 

CNNs are a well-known deep learning architecture inspired by the natural visual perception mechanism of living crea-

tures. CNNs have been widely used and have achieved superior performance in the fields of image classification, object

recognition and object detection and tracking [16,41] due to their powerful ability to learn deep features. The recent progress

in writer identification is attributed mainly to advancements in CNNs based on supervised [6–8,11,17,43,47] and unsupervised

feature learning [9] . The features extracted from CNNs perform better than handcrafted features as discriminative charac-

teristics. For example, Xing and Qiao [47] designed a multistream CNN structure for writer identification and achieved a

high identification accuracy on the IAM [31] and HWDB [27] datasets using a small amount of handwritten documents. In

[8] , Christlein proposed using activation features from CNNs as local descriptors for writer identification and improved the

identification performance on the ICDAR2013 dataset. Eldan and Shamir [10] showed that a deeper network would learn a

more discriminative representation but will need more resources to train. Therefore, we recommend that a tradeoff and a

deep residual neural network with 50 layers (ResNet-50) could be applied in our work. 

Semi-supervised feature learning significantly outperforms supervised feature learning when annotated data are limited

in the training set, e.g., weakly labeled or unlabeled data are available [21,45] . Specifically, semi-supervised feature learning

saves time and reduces the cost needed for annotating data when the volume of clean labeled data is limited. Some recent

studies investigated a semi-supervised feature learning pipeline by combining unsupervised feature learning with supervised

feature learning [38,44] to assign an original or new label to unlabeled data [25,34] . Motivated by these previous studies, we

attempt to use a modified semi-supervised feature learning method by assigning a weighted uniform label distribution to

extra unlabeled data (extra data) according to the original labeled data (real data). We believe that the proposed approach

has the potential to regularize the baseline for improving identification performance. 

Therefore, we proposed a semi-supervised feature learning method that leverages a deep CNN and weighted label

smoothing regularization (WLSR) to construct a powerful model that learns discriminative representations for offline writer

identification. Specifically, we first preprocess the original labeled data and the extra unlabeled data. Then, these original

labeled data and extra unlabeled data are fed into a deep residual neural network (ResNet) [16] simultaneously. Further-

more, the WLSR method regularizes the learning process by integrating the unlabeled data, which can reduce the risk of

overfitting and direct the model to learn more effective and discriminative features. Finally, the local features of every test

handwritten document are extracted and encoded as a global feature vector for identification. 

To summarize, this study makes the following contributions: 

A . This study is a pioneering work that uses a semi-supervised feature learning pipeline to integrate extra unlabeled

images and original labeled images into the ResNet model for writer identification. 

B . The WLSR method of semi-supervised feature learning is used to regularize the identification model with unlabeled

data. We thoroughly evaluate its availability on public datasets. 

C . Our results show that the proposed semi-supervised feature learning model shows consistent improvement over the

deep residual neural network baseline and achieves better performance than that of existing approaches on benchmark

datasets. 

The remainder of this paper is organized as follows. Section 2 provides an overview of the related works in the field of

writer identification. The semi-supervised feature learning pipeline is presented in Section 3 . The performance and evalu-

ation are given in Section 4 . Section 5 presents the discussion. Section 6 provides a summary and the outlook for future

research. 
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2. Related work 

Data augmentation [6–8,11,43,47] and semi-supervised learning [2,36,37] are widely used for classification and identifi-

cation when the amount of annotated data in a training set is limited. In this section, we review related work on writer

identification that implemented different data augmentation approaches or semi-supervised learning methods to address 

cutting-edge challenges. 

2.1. Data augmentation 

In this section, we review related work on writer identification that considered different data augmentation approaches

to address cutting-edge challenges. Some researchers implemented data augmentation in intrasets [8,11,43,47] , but this

method easily led to model overfitting. Two recent studies added extra labeled data to the original data to enlarge the

training set; however, this method required a vast amount of additional data to improve the identification results [6,7] . 

Fiel and Sablatnig [11] used a series of image preprocessing methods (binarization, text line segmentation, and sliding

window) and generated a discriminative feature via CaffeNet for each 56 × 56 image patch. Because CNNs have to be trained

on a large amount of data to achieve good results, he cut line images into patches using a sliding window model with a

step size of 20 pixels and rotated each patch of the sliding window from −25 to +25 degrees using a step size of 5 degrees.

Thus, the new training set consisted of more than 2,30 0,0 0 0 image patches, which artificially enlarged the original training

set. His proposed algorithm achieved good performance on the ICDAR2011 [12] and CVL [24] datasets, but this algorithm

failed to improve the performance on the ICDAR2013 [29] dataset. Furthermore, the CNN was trained on word images of

the IAM dataset and the features of the CVL dataset extracted from the pretrained CNN. It suggested that the IAM and

CVL datasets share a similar sample space. In [43] , Tang introduced a new method for offline writer identification using

a CNN and a joint Bayesian approach to contend with insufficient benchmark datasets for CNN model training. Tang also

used words segmented from handwritten documents as elements to permute the texts to generate a significant number of

images, which were subsequently converted to form handwritten pages. In addition, all the reconstructed handwritten pages

were split into some nonoverlapping patches for training. In [47] , Xing introduced a data augmentation method to enhance

the performance of the proposed DeepWriter. However, these data augmentation methods only enlarged the dataset in the

area of the intraset, and existing models did not consider dealing with the generated data, leading to an overfitting situation

and limitations of feature learning in CNNs. 

In [6] , Christlein created a combined dataset (MERGED) consisting of 559 scribes with four documents per writer, result-

ing in 2236 documents from the ICDAR2013 and CVL datasets. Thereby, the training set was enlarged, and the outcomes on

the MERGED datasets slightly differ from the image vocabularies that can be calculated from the ICDAR2013 experimental

set or the CVL dataset. Furthermore, Christlein et al. [7] showed that the identification rate on the CVL test set could be

improved by adding additional datasets (ICDAR2011 and IAM [31] ) into the CVL training set. Although existing data aug-

mentation approaches have the capability to improve the identification performance using the extra data, we can imagine

that it requires a large amount of extra labeled data. In practice, however, we do not have access to collect a large number

of samples for writer identification. 

In contrast to the aforementioned works, we employed a semi-supervised feature learning pipeline that allows the addi-

tion of data without labels. We assumed that the semi-supervised feature learning approach could effectively avoid overfit-

ting and require less additional data to improve the feature learning ability of the baseline. 

2.2. Semi-supervised learning 

Semi-supervised learning significantly outperform supervised learning for writer identification in small datasets. In 

[36,37] , Porwal proposed a structural-correspondence-learning-based semi-supervised learning approach for writer identifi- 

cation. This semi-supervised learning method improved the performance of a writer classifier with two distinct handcrafted

features (gradient, structural and concavity features (GSC), and contour angle features). The method first generates the GSC

and contour angle features for the labeled data and the contour angle features for the unlabeled data. The GSC features are

then used for training a support vector machine (SVM) for auxiliary label generation of the unlabeled data features, and all

contour angle features are used for training the classifiers of all subtasks. In fact, the semi-supervised learning in Porwal’s

work makes direct use of the handcrafted features and requires that the number of unlabeled data is same as the that of the

testing data. Additionally, Porwalâs method is desirable in that the auxiliary tasks are related to each other, so a common

structure can be retrieved. 

3. Semi-supervised feature learning pipeline 

As shown in Fig. 1 , our proposed semi-supervised feature learning pipeline consists of three parts. A . Preprocessing: For

the ICDAR2013 dataset, the handwritten documents are segmented into line images by a line segmentation method [40] , and

then the line images are split up using a sliding window approach without overlapping. For the IAM and CVL datasets, we

normalize the word images already provided. B . Semi-supervised feature learning: During training, the original labeled data

(real data) and extra unlabeled data (extra data) are shuffled and simultaneously fed into the ResNet-50 baseline, which is
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Fig. 1. The pipeline of semi-supervised feature learning, which consists of three parts: preprocessing (green dotted box), semi-supervised feature learning 

(blue dotted box) and encoding (purple dotted box). During training, the original labeled data and extra unlabeled data are shuffled and fed into the semi- 

supervised feature learning network. For testing, the local features (red rectangles with solid edge in encoding part) of testing handwritten documents are 

extracted from the fully connected layer of the pretrained model, and then all the local features of one handwritten test document are encoded into a 

global feature vector (blue rectangles with solid edge in encoding part). (For interpretation of the references to colour in this figure legend, the reader is 

referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

regularized by WLSR. Furthermore, the trained model is used for extracting local features of testing handwritten documents.

Specifically, all local features of handwritten test documents are extracted from the fully connected layer, and thus, all layers

after the fully connected layer can be discarded. C . Encoding: We reduce the dimensions of local features with PCA-White

[23] , and then the vector of locally aggregated descriptors (VLAD) [22] is used to encode the local features of every test

document as a global feature vector, which is used for writer identification with the nearest neighbor approach. All of the

parts will be concretely introduced in the following. 

3.1. Preprocessing 

First, a binarization is implemented for all handwritten pages with the Otsu [33] method. Second, the handwritten pages

have to be segmented. Because the CVL dataset [24] and IAM [31] dataset already provide a segmentation of the words, these

images are directly used for training and evaluating after normalization, as shown in Fig. 3 . For the ICADR2013 competition

on the Writer Identification dataset [29] , the handwritten documents are segmented into lines with the method proposed

by Srinivasan and Srihari [40] . The line segmentation method is based on a statistical approach that segments the text lines

exactly. In addition, we normalize the line images to a height of 256 pixels and maintain their aspect ratio. Finally, all text

lines are cut into patches with a size of 256 × 256 without overlap using the sliding window approach. Some line images

and patches of the ICDAR2013 dataset are shown in Figs. 2 and 3 , respectively. Furthermore, we remove noise patches (e.g.,

blank patches) to avoid adverse effects. 

3.2. Semi-supervised feature learning 

In this section, we thoroughly introduce the process of the proposed semi-supervised feature learning. Semi-supervised

feature learning is based on a baseline (ResNet-50) and WLSR method. The baseline serves as an identification model, and

the local features of testing handwritten pages are extracted from the fully connected layer of the baseline during testing.

WLSR regularizes the baseline and directs the model to learn more discriminative features. 
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Fig. 2. Part of the line images of the ICDAR2013 dataset are segmented by the proposed line segmentation approach and are normalized with their original 

aspect ratio. 

Fig. 3. Part of the patches extracted from the ICDAR2013 dataset (top row), word images provided by the CVL dataset (middle row) and word images 

provided by the IAM dataset (bottom row), where all have been preprocessed. The patches of the ICDAR2013 dataset are normalized to 256 × 256. Each 

word image with size x × y in the CVL and IAM datasets is normalized to an image of size 256 × m or m × 256 such that x 
y 

= 

256 
m 

or x 
y 

= 

m 
256 

. 

 

 

 

 

 

 

 

 

 

 

 

3.2.1. CNN baseline 

He et al. [16] first proposed ResNet for image classification and object recognition and achieved impressive results; ResNet

has since been widely applied in other tasks due to its strong feature learning ability. In this work, ResNet-50 is used as a

baseline because it learns discriminative representations without consuming too much of the time and computational bud-

gets in writer identification. A ResNet consists of residual units that have two branches. One branch has several convolutional

layers and learns the features of the input, and the other bypasses the other branch and forwards the result of the previous

layer. These units help the CNN model preserve the identity and maintain a deeper structure. Following the conventional

fine-tuning strategy, we use a model pretrained on ImageNet. To avoid model overfitting and to learn more discriminative

features, we add a rectified linear unit (ReLU) layer [13] and replace the original pooling layer with a global average pooling

layer [26] before the fully connected layer. In addition, we modify the last layer to have K neurons to predict the K classes,

where K is the number of classes in the original training data. The extra data are mixed with the original data as the input

of the CNN. That is, the original labeled training data and the extra unlabeled data are shuffled and simultaneously trained.
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Fig. 4. The label distributions of the real data and extra data used in our proposed semi-supervised feature learning pipeline. The cross-entropy loss 

combines them and will be simultaneously optimized ( Eq. (8) ). (a) The label distribution of real data ( Eq. (2) ) is a one-hot distribution, which shows that 

the original cross-entropy loss only takes the ground-truth term into account ( Eq. (3) ). (b) We propose the virtual weighted uniform label distribution for 

the extra data ( Eq. (6) ), which is assumed to not belong to any predefined training classes. All extra data will result in an incorrect prediction, and thus, 

the network will be penalized. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

After training, the local features of all test handwritten documents are extracted from the fully connected layer. Additional

implementation details are provided in Section 4.3 . 

Based on prior studies [15,16,28] , the time complexity and space complexity of a CNN model are F LOP s ∼ O ( 
∑ D 

l=1 M 

2 
l 

·
K 

2 
l 

· C l−1 · C l ) and Parameters ∼ O ( 
∑ D 

l=1 K 

2 
l 

· C l−1 · C l + 

∑ D 
l=1 M 

2 
l 

· C l ) , respectively, where l is the index of a convolutional layer

in the model, D is the number of convolutional layers (also known as the “depth”), C l is the number of filters in the l -th

layer (also known as the “width”), K l is the spatial size of the filter in the l -th layer, and M l is the spatial size of the output

feature map in the l -th layer. Our proposed algorithm has 3.8 billion FLOPs (multiply-adds) and 27.6 million parameters. The

running time is 3.16 ± 0.04 seconds for one batch of 128 patches during training, while the running time is 0.0476 ± 0.0016

seconds for the feature extraction of one patch during testing. 

3.2.2. Weighted label smoothing regularization method 

Label smoothing regularization (LSR) was first used for fully supervised learning in the 1980s and was recently proposed

to regularize the classifier layer by estimating the marginalized effect of label dropout during training [42] . In the person

reidentification task, Zheng et al. [48] extended LSR to label smoothing regularization for outliers (LSRO), which leveraged

unsupervised data generated by GAN and set the virtual label distribution to be uniform over all classes, effectively reg-

ularizing the baseline model and achieving better retrieval performance than the baseline. In this work, we propose the

WLSR method to regularize the CNN baseline with the extra unlabeled data for offline writer identification. WLSR sets the

virtual label distribution to be a weighted uniform distribution over all classes, which effectively regularizes the baseline

according to the original training data distribution. For instance, if the original training set has a large number of common

features that do not benefit writer identification (e.g., some ink traces and scribe width), the identification model may be

misdirected to take these common features as a discriminative representation, which limits the discriminative ability of the

model. However, if we add these common features of extra unlabeled data into the model for training, the classifier will

make an incorrect prediction toward the labeled words, and thus, the classifier will be penalized. Moreover, the regular-

ization ability of WLSR is decided by the similarity of the sample space between the original labeled data and the extra

unlabeled data. If the extra unlabeled data are located nearer the original training data in the sample space, the regulariza-

tion ability of WLSR will be more effective. Otherwise, the performance of WLSR will be undesirable. 

WLSR is proposed to be used with cross-entropy loss. Formally, let k ∈ { 1 , 2 , . . . , K} be the original training data class and

N be the numbers of the original training data. The cross-entropy loss is shown in Eq. (1) . 

l = −
K ∑ 

k =1 

log(p(k )) q (k ) , (1)

where p ( k ) ∈ [0, 1] is the predicted probability of training data belonging to class k , which is derived from the softmax

function that normalizes the output of the previous CNN layer, and q ( k ) is the ground-truth distribution. Let y be the ground-

truth class label. A pair ( x , y ) is called the original training example, and i ∈ { 1 , 2 , . . . , N} . 
i i 
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For the original labeled data of the training set, its ground-truth distribution q real ( k ) is shown in Fig. 4 (a). It can be

formulated as: 

q real (k ) = 

{
0 , k � = y ;
1 , k = y. 

(2) 

Combining Eqs. (1) and (2) , the cross-entropy loss of real data loss real can be rewritten as: 

l oss real = −l og(p(y )) . (3) 

From Eq. (3) , it is clear that minimizing loss real is equivalent to maximizing the predicted probability of the ground-truth

class. 

However, LSR was proposed to take the distribution of non-ground-truth classes into consideration [42] . LSR discouraged

the network from being confident toward its prediction. Formally, its label distribution q LSR ( k ) is formulated as: 

q LSR (k ) = 

{
ε 
K 
, k � = y ;

1 − ε + 

ε 
K 
, k = y. 

(4) 

where ε ∈ [0, 1] is a smoothing parameter. Intuitively, if ε is too large, the network may fail to predict the ground-truth

label. Considering Eqs. (1) and (4) , the cross-entropy loss is written as: 

loss LSR = −(1 − ε) log(p(y )) − ε 

K 

K ∑ 

k =1 

log(p(k )) . (5) 

Thus, loss LSR not only takes the ground-truth class into account but also pays attention to other classes, which effectively

avoids network overfitting. 

We extend LSR from the supervised domain to the semi-supervised domain and propose weighted label smoothing

(WLSR) to train the extra unlabeled data. Specifically, we set the virtual label distribution as a weighted uniform distri-

bution over all classes for the extra unlabeled data according to the real data distribution, as shown in Fig. 4 (b). Thus, the

label distribution of the extra data q WLSR ( k ) can be formulated as: 

q W LSR (k ) = 

N ∑ 

n =1 

I(y n = k ) 

N 

. (6) 

Thus, by combining Eqs. (1) and (6) , the cross-entropy loss of the extra data loss extra can be written as: 

l oss extra = −
K ∑ 

k =1 

l og(p(k )) 

∑ N 
n =1 I(y n = k ) 

N 

, (7) 

where I(y n = k ) is an indicator function. The proposed semi-supervised feature learning pipeline shuffles and simultaneously

trains the real data and the extra data. Combining Eqs. (3) and (7) , we can rewrite the cross-entropy loss of semi-supervised

feature learning loss WLSR as: 

loss W LSR = −(1 − Z) · loss real − Z · loss extra 

= −(1 − Z) · log (p(y )) − Z ·
K ∑ 

k =1 

log(p(k )) 
∑ N 

n =1 I(y n = k ) 
N 

, 
(8) 

where Z is an indicator. For the extra data, Z = 1 . For the original training data, Z = 0 . Therefore, the proposed semi-

supervised feature learning method has two types of loss: one for real images and the other for extra images. 

We visualize the intermediate feature maps of the two pretrained models to identify the differences between the baseline

(ResNet-50) and the proposed semi-supervised feature learning pipeline (baseline + WLSR). We take some patches of the IC-

DAR2013 test set for testing. The selected patches belong to various handwritten documents on which the baseline performs

poorly, while the desired results are obtained with the semi-supervised feature learning model. For each patch, its activa-

tion is obtained from the intermediate layer “res4fx” of the network, the size of which is 14 Ã 14. Then, we visualize the

sum of several activation maps. As shown in Fig. 5 , the baseline network and the proposed semi-supervised feature learning

network activate different patterns in the content of patches. Specifically, the activation maps of the semi-supervised feature

learning more accurately and clearly exhibit the contents of the test patches than do the activation maps extracted from the

baseline. That is, the representations of the semi-supervised feature learning model are more discriminative, which is why

the proposed semi-supervised feature learning produces better results than the baseline. 

3.3. Encoding 

The all-local descriptors were extracted from the pretrained model during testing. We need to aggregate them to encode

a global feature vector for each test document. First, we reduce the dimensionality of the local descriptors with PCA-White,

which has been shown to effectively reduce the identification time and improve the identification performance [7,9] . In
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Fig. 5. Visualization of the activation maps of the test patches of the ICDAR2013 test set in the baseline (ResNet-50) and the proposed semi-supervised 

feature learning model (baseline + WLSR). The baseline and the proposed semi-supervised feature learning network activate different patterns of the patch 

content. The activation maps of the semi-supervised feature learning network more accurately and clearly represent the contents of the test patches than 

do the activation maps extracted from the baseline. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

addition, we encode the all-local descriptors of each test page as the global feature vector with VLAD, which encodes the

first-order statistics by aggregating the residuals of local features to their corresponding nearest cluster centroid. VLAD is a

standard encoding method that has been widely used in writer identification [9] and other information retrieval tasks [5,35] .

Formally, a codebook D = { c 1 , c 2 , . . . , c k } is first computed by k-means with k centroids, and all S local features f S ∈ R m of each

test handwritten image are assigned to their nearest cluster centroid. Then, all the residuals between the cluster centroid

and the assigned local features are accumulated for each cluster: 

v k = 

∑ 

f S : N N ( f S )= c k 
( f S − c k ) , (9)

where NN ( f S ) refers to the nearest neighbor of f S in dictionary D . All v k are concatenated as a global feature vector of one

handwritten page: 

v = (v T 1 , v 
T 
2 , . . . , v 

T 
K ) 

T . (10)

Thus, the global feature of each test document will eventually be km -dimensional. 

4. Evaluation 

In the following sections, we describe the datasets and evaluation metrics that we used for evaluating our proposed

method. Then, we verify that WLSR has the potential to regularize the baseline for improving identification performance.

Furthermore, we show the impacts of using various dimensions of local features, different numbers of extra unlabeled data

during training and different centroids of k-means during encoding. Finally, we compare our method to other methods for

writer identification. 

4.1. Datasets 

There are three different benchmark datasets used for evaluation: The ICDAR2013 dataset 1 [29] , the CVL dataset 2

[24] and the IAM dataset 3 [31] . All these datasets are publicly available and have been used in many recent publications
1 http://rrc.cvc.uab.es/ . 
2 https://cvl.tuwien.ac.at/category/research/cvl-database/ . 
3 http://www.fki.inf.unibe.ch/databases/iam- handwriting- database/ . 

http://rrc.cvc.uab.es/
https://cvl.tuwien.ac.at/category/research/cvl-database/
http://www.fki.inf.unibe.ch/databases/iam-handwriting-database/


164 S. Chen, Y. Wang and C.-T. Lin et al. / Information Sciences 482 (2019) 156–170 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[6,7,11,32,43,47] . Notably, Fiel and Sablatnig [11] achieved good performance by training a network on the IAM dataset and

evaluating the network on the CVL dataset. The results suggested that the word images in the IAM and CVL datasets can

share a more similar sample space. Tang and Wu [43] trained his model on the ICDAR2013 dataset, tested on CVL the dataset

and provided an impressive identification effect, which revealed that the patches of the CVL and ICDAR2013 datasets have a

highly similar sample space. Therefore, we take IAM word images and CVL patches as the extra unlabeled data to evaluate

CVL word images and ICDARA2013 patches, respectively. 

ICDAR2013 [29] : The ICDAR2013 benchmark dataset is divided into a training set with documents written by 100 writ-

ers and a test set with documents written by 250 writers. Every writer contributed four documents, including two Greek

documents and two English documents. 

CVL [24] : There are 310 writers who contributed documents for the CVL dataset. The 27 writers of the training set con-

tributed seven documents each, and the 283 writers of the test set contributed five documents each. All writers contributed

one German document, and the others are English documents. 

IAM [31] : The IAM dataset was contributed to by approximately 400 writers with 10 6 6 forms. In the collection, 82,227-

word examples are built from a vocabulary of 10,841 words. All of the documents were written in English. 

4.2. Evaluation metrics 

The mean average precision (mAP) and hard TOP-k, which are common evaluation metrics in image and information

retrieval tasks, are used for our experimental evaluation. 

A ranked list of all documents in the query library is generated according to the similarity of each query document.

Suppose that there are N handwritten documents from the query; thus, the average precision AP ( i ) of the i th (1 ≤ i ≤ N )

query document is Eq. (11) . 

AP (i ) = 

∑ M 

k =1 P (k ) · rel(k ) 

R 

(11) 

where M is the number of documents in the query library and R is the number of relevant documents of the i th query

document in the query library. P ( k ) is the precision at rank k , which is given by the number of documents from the same

writer in the query up to rank k divided by k. rel ( k ) is an indicator function, where rel(k ) = 1 when the document retrieved

at rank k is from the same writers, and rel(k ) = 0 otherwise. 

The mAP is the mean value of the average precision of all query documents. It can be written as: 

mAP = 

N ∑ 

i =1 

AP (i ) 

N 

. (12) 

The hard TOP-k depends on the calculation of the percentage of the query result, where the k highest ranked documents

are from the same writer. 

4.3. Experiments 

The proposed method was evaluated on the ICDAR2013, CVL and IAM benchmark datasets. We present the implementa-

tion details and analysis of the experimental results in the following. 

4.3.1. Implementation details 

In this work, we adopt the ResNet-50 model as a baseline. To gather more abstract features, we take the global aver-

age pooling layer to replace the original pooling layer and add a ReLU activation feature layer. Furthermore, the last fully

connected layer was modified to have 100 and 27 neurons for ICADAR2013 and CVL, respectively. We add a dropout layer

before the last convolutional layer and set the dropout rate to 0.5 for training. The momentum of stochastic gradient de-

scent is set to 0.9. We set the learning rate of the convolutional layers to 0.1 and have it decay to 0.01 after 45 epochs. To

evaluate ICDAR2013, we take the ICDAR2013 training image patches as the original labeled data and the CVL training image

patches as the extra unlabeled data. The CVL and IAM datasets already provide a segmentation of words. Thus, we directly

take the CVL training words as the original labeled data and the IAM words as the extra unlabeled data to evaluate the CVL

dataset. The size of the segmented image patches is set to 256 × 256, while the width or height of word images was set to

256 pixels and the original aspect ratio was maintained. We extracted the local features of the test images in the first fully

connected layer. The similarity between two handwritten documents was calculated by the Euclidean distance for ranking. 

4.3.2. Experimental results 

First, we evaluate how the number of neurons of the fully connected layer affects writer identification. The number

of neurons is set to 512, 1024, 2048, and 4096, which are assessed on the CVL dataset, as shown in Table 1 . The semi-

supervised feature learning pipeline achieves the best performance on the hard TOP-k and mAP metrics when the number

of neurons of the first fully connected layer is set to 2048. Thus, all the following experiments use this configuration. 
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Table 1 

The influence of the number of neurons of the fully con- 

nected layer on the CVL test set evaluated with the hard 

TOP-k and mAP metrics (%). 

TOP-1 TOP-2 TOP-3 TOP-4 mAP 

Fc-512 97.9 97.0 93.6 85.0 96.4 

Fc-1024 98.4 97.4 94.9 87.9 97.0 

Fc-2048 99.2 98.2 96.0 90.2 98.0 

Fc-4096 98.5 97.6 94.7 88.0 97.3 

Fig. 6. The influence of the number of centroids during encoding with VLAD. The mAP of the CVL dataset (red solid line) and the ICDAR2013 dataset (blue 

dotted line) for various numbers of k-means centroids. (For interpretation of the references to colour in this figure legend, the reader is referred to the 

web version of this article.) 

Table 2 

Comparison: The proposed semi-supervised feature learning vs. baseline on the CVL and 

ICDAR2013 test sets. 

TOP-1 TOP-2 TOP-3 TOP-4 mAP 

0 (baseline) 98.3 97.0 92.5 87.0 95.7 

CVL 120 0 0 (baseline) 98.4 97.0 94.0 87.2 96.8 

120 0 0(baseline + WLSR) 99.2 97.9 96.0 90.2 97.8 

0 (baseline) 94.9 74.6 55.1 N/A 88.0 

ICDAR2013 10 0 0 (baseline) 95.1 74.3 57.3 N/A 88.1 

10 0 0 (baseline + WLSR) 96.6 79.0 61.1 N/A 90.1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Second, we analyze the influence of the number of centroids k during encoding with VLAD. In general, when k is larger,

the retrieval performance is better for a large dataset. The experimental results on the ICDAR2013 and CVL datasets are

shown in Fig. 6 . As shown, when the number of centroids is set to 1, we achieve the largest mAP (98.0% and 90.1% on

ICDAR2013 and CVL, respectively). Moreover, the mAP of the two benchmarks consistently decreases as the number of cen-

troids increases. Three reasons may explain the experimental results: A . The ICDAR2013 and CVL datasets are too small;

therefore, they do not need more image vocabulary to represent themselves. B . Every writer wrote the documents with the

same content in one dataset, which means that the diversity of the dataset is limited. C . The dimensions of the local feature

are so large (2048 in this work compared to 64 in [22] ) that the local features are discriminative. 

Third, we verify the regularization ability of the WLSR method in the semi-supervised feature learning pipeline. The

same extra labeled and unlabeled data were added to the supervised baseline and the proposed semi-supervised feature

pipeline for training, respectively. As shown in Table 2 , the extra labeled data have almost no effect on writer identification

for the baseline, while the same unlabeled data improves the identification rate of the semi-supervised feature learning

pipeline (on the CVL and ICDAR2013 datasets), which shows that the regularization of WLSR improves the performance of

the baseline. 

Moreover, we compare the proposed semi-supervised feature learning pipeline with the baseline. As shown in Table 2 ,

when we add 12,0 0 0 extra unlabeled IAM words into the CNN for training, our method significantly improves the writer

identification performance on the CVL test set, which reveals that the WLSR method achieves improvements of 0.9% (from

98.3% to 99.2%), 0.9% (from 97.0% to 97.9%), 3.5% (from 92.5% to 96.0%), 3.2% (from 87.0% to 90.2%) and 2.1% (from 95.7% to

97.8%) in hard TOP-1, hard TOP-2, hard TOP-3, hard TOP-4, and mAP, respectively. On ICADAR2013, we observe improvements

of 1.7%, 4.4%, 6.0% and 2.1% in hard TOP-1, hard TOP-2, hard TOP-3, and mAP, respectively, when 10 0 0 extra unlabeled
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Table 3 

Comparison of the effect of various numbers of extra unlabeled images on 

the CVL test set evaluated with the hard TOP-k and mAP metrics (%). 

TOP-1 TOP-2 TOP-3 TOP-4 mAP 

0 (baseline + WLSR) 98.3 97.0 92.5 87.0 95.7 

10 0 0 (baseline + WLSR) 98.8 97.9 95.0 88.5 97.3 

50 0 0 (baseline + WLSR) 98.9 97.9 95.4 88.9 97.5 

120 0 0 (baseline + WLSR) 99.2 97.9 96.0 90.2 97.8 

240 0 0 (baseline + WLSR) 99.0 97.9 95.2 89.9 97.6 

Table 4 

Comparison of the effects of the numbers of extra unlabeled im- 

ages on the ICDAR2013 test set evaluated with the hard TOP-k 

and mAP metrics (%). 

TOP-1 TOP-2 TOP-3 mAP 

0 (baseline + WLSR) 94.9 74.6 55.1 88.0 

500 (baseline + WLSR) 94.8 75.5 56.3 88.1 

10 0 0 (baseline + WLSR) 96.6 79.0 61.1 90.1 

20 0 0 (baseline + WLSR) 96.5 78.6 59.6 90.0 

50 0 0 (baseline + WLSR) 94.9 74.3 56.5 88.0 

Table 5 

Comparison of the performance with other methods on the CVL test set. 

The hard TOP-k and mAP metrics are listed (%). 

TOP-1 TOP-2 TOP-3 TOP-4 mAP 

CS-UMD [24] 97.9 90.0 71.2 48.3 N/A 

QUQA A [24] 30.5 5.7 0.5 0.1 N/A 

QUQA B [24] 92.9 84.9 71.5 50.6 N/A 

TEBESSA-c [24] 97.6 94.3 88.2 73.9 N/A 

TSINGHUA [24] 97.7 95.3 94.5 7.30 N/A 

Fiel and Sablatnig [11] 98.9 97.6 93.3 79.9 N/A 

Christlein et al. [6] 99.2 98.1 95.8 88.7 97.1 

Nicolaou et al. [32] 99.0 97.7 95.2 86.0 N/A 

Christlein et al. [7] 98.8 97.8 95.3 88.8 96.4 

Ours (single) 99.2 97.9 96.0 90.2 97.8 

Ours (2-streams) 99.2 98.4 96.1 91.5 98.0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CVL patches are added in ICDAR2013, as shown in Table 2 . Thus, the proposed semi-supervised feature learning pipeline

effectively im proves upon the performance of the baseline. 

In addition, we noted that the amount of additional unlabeled data substantially affects the regularization ability of the

WLSR, as shown in Tables 3 and 4 . In terms of Table 3 (CVL dataset), the regularization of the WLSR is insufficient if a small

amount of extra unlabeled data (e.g., 0, 10 0 0 or 50 0 0 cases) is incorporated into the pipeline. However, if a large amount

of extra unlabeled data (e.g., 24,0 0 0 cases) is added, the pipeline tends to assign weighted uniform prediction probabilities

to all training data. This result indicates that our model is over-regularized by the WLSR; thus, the model may incorrectly

predict the original labeled data. The similar results in Table 4 (ICDAR2013 dataset) indicate that the best performance is

achieved with 10 0 0 extra unlabeled data. Under-regularization and over-regularization occur with 0/500 extra unlabeled

data and 20 0 0/50 0 0 extra unlabeled data, respectively. In summary, an appropriate amount of extra unlabeled data can

ensure that the proposed semi-supervised feature learning avoids under-regularization and over-regularization. 

Finally, we combined the two models generated by our method to form an ensemble (2-stream) to further enhance the

identification performance and compared our proposed method with the other published methods on the ICDAR2013 and

CVL datasets, as listed in Tables 5 and 6 , respectively. The semi-supervised feature learning pipeline achieves better results

than most other supervised approaches. On the CVL dataset, we achieve hard TOP-1 = 99.2%, hard TOP-2 = 98.4%, hard

TOP-3 = 96.1%, hard TOP-4 = 91.5, and mAP = 98.0%, which are better results that those achieved by the other supervised

methods. On ICDAR2013, we achieved hard TOP-1 = 97.7%, hard TOP-2 = 83.3%, hard TOP-3 = 63.0, and mAP = 91.1%, which

are also very competitive results compared to the results of the other methods. Specifically, the proposed semi-supervised

feature learning method produces the desired performance on the ICDAR2013 test set with a few extra unlabeled patches

of the CVL training set, while Christlein et al. [6] added the entire CVL training set to ICDAR2013 for training and achieved

ordinary results. The results in Tables 5 and 6 show that the semi-supervised feature learning method takes full advantage

of the extra data and is more convenient to use in practice than other supervised methods [6–8,11,24,29,32] . Fig. 7 presents

some identification results achieved by the proposed semi-supervised feature learning method (single) on the ICDAR2013

dataset (sample 1–2, sample 22-4, sample 24-3, and sample 248-1). The images (gray border) are the query images. The

identification images (red border and green border) are sorted according to the similarity scores from top to bottom (from
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Table 6 

Comparison of the performance with the other methods on the 

ICDAR2013 test set. The hard TOP-k and mAP metrics are shown 

(%). 

TOP-1 TOP-2 TOP-3 mAP 

CS-UMD-b [29] 95.0 20.2 8.4 N/A 

HIT-ICG [29] 94.8 63.2 36.5 N/A 

TEBESSA-c [29] 93.4 62.6 36.5 N/A 

CVL-IPK [29] 90.9 44.8 24.5 N/A 

Fiel and Sablatnig [11] 88.5 40.5 15.8 N/A 

Christlein et al. [6] 97.1 42.8 23.8 67.1 

Nicolaou et al. [32] 97.2 52.9 29.2 N/A 

Christlein et al. [7] 98.2 71.2 47.7 81.4 

Ours (single) 96.6 79.0 61.1 90.1 

Ours (2-streams) 97.7 83.3 63.7 91.8 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Rank-1 to Rank-5). Images with a green border are correct candidates, and images with a red border images are incorrect

candidates. Most ground-truth candidate images are correctly identified. 

5. Discussion 

In this study, we visualized the intermediate feature maps of the baseline and semi-supervised feature learning pipeline

(Sec. 3.2.2). The results showed that the activation maps of the semi-supervised feature learning more accurately represent

the contents of the test patches than do the activation maps extracted from the baseline. Then, we analyzed the impact of

the dimensions of the local features, the centroids of VLAD encoding and the amount of extra unlabeled data Section 4.3.2 .

Moreover, we experimentally showed that the proposed method could significantly improve the baseline and perform com-

petitively with existing writer identification approaches, which benefit from the potential of regularization of WLSR. WLSR

takes full advantage of extra unlabeled data for regularizing the baseline, and thus, the CNN learns effective and discrimi-

native features. 

Due to some common representations in the extracted features, some researchers combined multiple handcrafted ele-

ments to derive a more reliable discriminative feature, yet restraining the impact of common features. For example, Helli

extracted features using Gabor and XGabor filters and then developed a feature relation graph [20] . In terms of the width

of ink traces, a powerful source of information for offline writer identification consisted of a powerful feature (Quill) in

combination with the direction [3] . In [18] , they proposed a novel junction detection method for writer identification using

stroke-length distribution and direction of ink of texts. Motivated by the above methods, we proposed a WLSR method to

regularize and penalize the common features that are automatically learned features by the CNN and reducing the negative

influence of common features. 

Our proposed semi-supervised feature learning approach suffers from the limitation that WLSR depends on the similarity

of the sample spaces of the original labeled data and the extra unlabeled data. In the future, the generative adversarial

networks (GANs), a system of two neural networks competing with each other in a zero-sum game framework, may be

a potential choice to overcome this limitation. Because we can generate data by GANs and original data share the same

sample space, we do not require any extra data from other datasets. 

6. Conclusion 

In this paper, we proposed a semi-supervised feature learning pipeline for offline writer identification. To the best of

our knowledge, this is a pioneering work that uses semi-supervised feature learning to automatically learn discriminative

features to improve writer identification. Notably, the WLSR method is introduced to train on the extra unlabeled data

and the original labeled data simultaneously to provide the semi-supervised feature learning pipeline with regularization

ability, which improved the identification results of the baseline model and achieved better performance than other popular

methods on the CVL and ICDAR2013 datasets. 

In the future, we will choose a better encoding method that is suitable for small datasets of writer identification tasks

to replace VLAD. Furthermore, we will adopt the unlabeled data generated by GANs to train the semi-supervised feature

learning network because the generated data share a similar sample space with the original labeled data. 
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Fig. 7. Writer identification results of the proposed semi-supervised feature learning method (single) on the ICDAR2013 dataset (sample 1–2, sample 22-4, 

sample 24-3, and sample 248-1). The images (gray border) are the query images. The identification images are sorted according to the similarity scores 

from top to bottom (from Rank-1 to Rank-5). We maintain the original aspect ratio of the images. (For interpretation of the references to colour in this 

figure legend, the reader is referred to the web version of this article.) 
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